
Progressive Ad-Hoc Route Reconstruction Using
Distributed UAV Relays after a Large-Scale Failure

Christina Suyong Shin, So-Yeon Park, JinYi Yoon, and HyungJune Lee
Department of Computer Science and Engineering

Ewha Womans University, South Korea
Email: hyungjune.lee@ewha.ac.kr

Abstract—In this paper, we address a route reconstruction

problem using Unmanned Aerial Vehicles (UAVs) after a large-

scale disaster where stationary ad-hoc networks are severely

destructed. The main goal of this paper is to improve routing

performance in a progressive manner by reconnecting parti-

tioned networks through dispatched UAV relays. Our proposed

algorithm uses two types of UAVs: global and local UAVs to

collaboratively find the best deployment position in a dynamically

changing environment. To obtain terrestrial network connectivity

information and extract high-level network topology, we exploit

the concept of strongly connected component in graph theory.

Based on the understanding from a global point view, global UAVs

recommend the most effective deployment positions to local UAVs

so that they are deployed as relays in more critically disrupted

areas. Simulation-based experiments validate that our distributed

route reconstruction algorithm outperforms a counterpart algo-

rithm in terms of steady-state and dynamic routing performance.

I. INTRODUCTION
In a large-scale disaster, ad-hoc networks would severely

be destructed, and a fast network recovery is an important
task. There have been several efforts that try to reconnect
the partitioned networks. For example, dispatching additional
ad-hoc nodes (as relay nodes) to the network can be one of
solutions. However, even grasping destructed ad-hoc network
may be very challenging because network destruction occurs
in a large-scale area, also limiting direct access to the area.

To tackle the problem, Unmanned Aerial Vehicles (UAVs)
can effectively be applied for recovering disrupted network
and have several advantages when they are utilized. Firstly,
UAVs can freely fly over the network area where direct
access is almost impossible. Secondly, UAVs can be used
to gather network information from the air [11], [12]. UAVs
can communicate not only with other UAVs, but also with
terrestrial ad-hoc nodes so that they can be used to recover
disjoint networks by acting as temporary relays [4], [7].

The problem of finding the optimal location of relay nodes
has been investigated under the relay node placement problem
[6]. Traditionally, this problem is transformable to Steiner
minimum tree with minimum number of Steiner points and
bounded edge length problem (SMT-MSPBEL), and it has
been proved as NP-hard [1]. Researchers aim to solve this
problem with some heuristic algorithms [5], [8], [9]. However,
they still suffer from intrinsic high complexity and can not be
directly applied to realistic disaster environments.

This work was supported by Basic Science Research Program through the
National Research Foundation of Korea (NRF) funded by the Ministry of
Education (NRF-2015R1D1A1A01057902).

Recently, dispatching UAVs as temporary relay nodes has
been proposed in [3], [4], [7]. Our previous works [4], [7]
perform network probing for diagnosis and determine UAV re-
lays’ deployment positions. [4] has a drawback of having high
complexity because it relies on somewhat heavy optimization
computation. To address the computation issue, [7] suggests
a lightweight yet efficient algorithm. However, both works
are based on centralized algorithms and find the one-shot
deployment solution without taking into account dynamical
deployment decision.

This paper presents a progressive route reconstruction algo-
rithm using distributed UAV relays, which is more suitable to
realistic disaster environments. Our proposed algorithm uses
two types of UAVs, called local UAVs and global UAVs. We
design them to collaboratively find out the best deployment
position in terms of routing performance improvement. Local
UAVs densely traverse with a short stride and probe local
network information. Based on the collected local network
information, local UAVs iteratively perform local optimization
to find a deployment position with its own best effort.

Global UAVs, on the other hand, roughly traverse with a
long stride and construct a condensed higher-level network
topology by exploiting the concept of strongly connected
component in graph theory. Global UAVs recommend globally
more optimized deployment positions to their paired local
UAVs to avoid the danger of falling into a local optimal
deployment position determined by local UAVs. Accordingly,
local UAVs can be deployed as relays in more critically
disrupted areas from a global point of view.

Our proposed route reconstruction scheme progressively
finds a way to improve end-to-end routing performance by
utilizing a mixture of local and global deployment decision.

The rest of this paper is organized as follows: After explain-
ing system model in Sec. II, we present our network traversing
algorithm in Sec. III. In Sec. IV, we describe our progressive
deployment algorithm. After demonstrating evaluation results
in Sec. V, we conclude this paper in Sec. VI.

II. SYSTEM MODEL
We consider a route reconstruction problem using UAVs in a

large-scale disaster scenario where stationary ad-hoc networks
are severely disconnected in parts. Our main objective is
to improve routing performance in a progressive manner by
repairing network connectivities using distributed UAVs as
relay nodes as illustrated in Fig. 1.

Path Planning

Progressive Deployment

Obtain navigation paths to collect
network topology information

Find out the effective UAV
positions to recover connectivity

Deployed

Greedy traversing
around locally confined area

Collect information
from a global point of view

Recommend
candidate vertexes

Deployed

Local

Local

Global
Global

Local

Fig. 1. Overall procedure of our proposed algorithm

We assume that UAVs are able to communicate with other
UAVs or terrestrial ad-hoc nodes within the communication
range using a wireless interface such as 802.11 or 802.15.4.
It is also assumed that UAVs can keep track of their current
positions over a certain designated Region of Interest (RoI)
based on their equipped Global Positioning System (GPS).
External restrictions such as weather, obstacles, and collisions
with other UAVs, and battery shortage issues are not consid-
ered in this paper.

The problem of route reconstruction using UAV relays can
be divided into two sub-problems: 1) network probing through
traversing of UAVs for diagnosis, and 2) relay deployment
decision that finds out the most effective UAV positions in
terms of recovery performance for the disconnected network.

III. NETWORK TRAVERSING BY UAVS
On the occurrence of a large-scale disaster, communication

networks would be severely damaged. Further, the disaster
event may not occur in one-shot, but would rather be followed
by a series of after-shocks or lead to continuous and sometimes
even severer network disruption. In this situation, UAVs can
play crucial roles in both network status diagnosis and network
relaying as a replacement of damaged nodes.

To cope with the dynamically changing network environ-
ment, one type of UAVs, called local UAVs, start to be
deployed to one location and iteratively change its deployed
location over time. The local UAVs locally move with a short
stride over the nearby areas and find a better deployment
position with the best effort based on its locally collected
information. On the other hand, another type of UAVs, called
global UAVs, traverse over a relatively larger area with a long
stride to find out a critically disrupted area from a higher
global point of view. A global UAV recommends several
better deployment locations to its paired local UAV so that the
local UAV can determine the next (better) deployment location
among them. Both types of UAVs continuously collaborate to
find a more globally efficient deployment position once they
become paired as in Fig. 2.

In this section, we present path planning algorithms for
local and global UAVs and communication protocols upon the
encounter of two (or more) UAVs in the air (e.g., local-to-local,
local-to-global, and global-to-global) for network traversing.
A. Path Planning

To obtain efficient navigation paths for local and global
UAVs, we define a grid map over the RoI that consists of

m

m L1

L2

.

..

Local

Local

Global

Global
Paired

Unpaired

Fig. 2. Traversing mode evolution between local UAV and global UAV

m ⇥ m virtual vertexes on a certain height in the air. UAVs
move along these grid vertexes with a distributed manner
according to their own state. Global UAVs do along a relatively
wider zigzag trajectory in a relatively more global manner,
while local UAVs initiate the network traversing with a greedy
local manner.

Once a global UAV encounters a local UAV within the radio
range, two UAVs are paired with a certain amount of time. The
local UAV is relocated to one location of which the global
UAV recommends.

1) Global UAVs: Global UAVs traverse the RoI area with
a rough way by following a zigzag trajectory with the height
of L1 and the width of L2 (as in Fig. 2). In this way, they
obtain network connectivity status over a relatively larger area.
During this zigzag movement, it may encounter one or more
local UAVs that move with their own trajectory or have been
deployed at some locations, and then become paired with
it. Once paired, the global UAV recommends deployment
candidates to the local UAVs. Then, it generates an encir-
cling trajectory with one hop away from the recommended
candidate locations and keeps collecting network connectivity
information. We let each global UAV traverse near its paired
local UAVs for suggesting new recommendations to each local
UAV on the way. Unless it encounters again with its paired
local UAVs, it keeps extending the encircling trajectory by
increasing the number of hops up to n from the original
candidate locations recommended by itself. In case that the
global UAV meets its paired local UAVs again on the way,
it recommends new deployment candidate locations based on
the latest network information and follows the aforementioned
steps. Otherwise, it finishes the encircling trajectory-based
exploration with n hops away while becoming unpaired, and
reverts back to the zigzag trajectory-based exploration.

2) Local UAVs: Local UAVs explore locally confined areas
around the nearby vertexes by gradually moving along an outer
clockwise or counter-clockwise trajectory. From the vertex
where the local UAV is currently located, it generates its
future trajectory that covers its nearby unvisited square area
as much as possible to find out local network connectivity
status. Otherwise, it randomly chooses one of four possible
adjacent vertexes and then moves to it. Then, it randomly
selects either clockwise or counter-clockwise direction, and
generates its precedent trajectory path. Once the local UAV
meets a global UAV and becomes paired, it changes the local

traversing mode. The local UAVs attempt to visit all the
candidates that the global UAV has recommended based on
its globally collected network information. After exploring all
the recommended vertexes, the local UAV finally determines
its newly deployment position. As long as the local UAV keeps
paired with a global UAV, it continues to move its deployment
positions based on the global UAV’s recommendation. Once
the local UAV is no longer paired after a pairing time window
W , it keeps staying where it is lastly deployed based on the
latest recommendation from the previously paired global UAV,
unless encountering another global UAV.
B. Communication

During traversing, a UAV can communicate with parts
of terrestrial nodes for network diagnosis, and with other
UAVs for sharing its visiting history and collected network
information when they are within the radio range.

1) UAV-to-Ground: We want UAVs to collect locally con-
nected network topology information for capturing the current
network status. To do this, we borrow path stitching proposed
in [7]. For path stitching, UAVs perform two tasks of sending
out a new probing packet toward terrestrial nodes and col-
lecting a previous probing packet that has been generated by
another UAV. Once a terrestrial node receives a probing packet
from a UAV or another node, it relays the packet up to k hops
to its neighbors nodes by recording the relay path. In this
way, each UAV continues to retrieve local route information
that will be used to construct essential network topology.

2) UAV-to-UAV: A UAV may encounter another UAVs
during its traversing in the air within the radio range. To avoid
duplicate coverage in the future trajectory, they share their
visited vertex list each other. Also, they share the collected
local route information such that a local UAV can expand the
localized network information and be likely to choose a more
efficient deployment position than before. A global UAV, on
the other hand, can make the whole network exploration faster
and recommend more globally efficient deployment positions
to paired local UAVs.

The pairing process is initiated when a local UAV meets
a global UAV that has availability to pair where it can
accommodate up to N local UAVs at the same time. In case
that the global UAV has insufficient network information to
recommend deployment positions to a specific local UAV
that is attempted to be paired, it releases the pairing process
and becomes unpaired with that local UAV. During a certain
pairing window W , a local UAV avoids the danger of falling
into a local optimal deployment position. This happens thanks
to its paired global UAV that retains a more global knowledge
of the higher-level network topology and recommends more
globally optimal deployment positions.

IV. PROGRESSIVE DEPLOYMENT OF UAV RELAYS
In this section, we present our progressive deployment

algorithm that gradually keeps optimizing UAVs’ deployment
positions based on the latest global network topology informa-
tion over time. One type of UAVs (i.e., global UAVs) extract
high-level network topology based on the collected network
connectivity information while traversing with a long stride

.

. : Resulting candidates
from paired global UAVs
: Strongly connected

components

Fig. 3. Network partitioning based on strongly connected component and
its resulting candidate vertexes that can effectively bridge two components

over the RoI. Another type of UAVs (i.e., local UAVs) make
their own best to find a deployment position and be deployed
with itself as relay based on localized network topology while
traversing with a short stride over the RoI.

We exploit the concept of strongly connected component in
graph theory to form a corresponding high-level network based
on all the collected localized probing information. It allows us
to discover an effective UAV deployment vertex through which
two isolated sub-networks become tightly connected again.
A. Global UAVs

Global UAVs explore the disrupted network with a long
stride of the zigzag pattern. Once a global UAV encounters a
local UAV on the way, it tries to recommend good deployment
positions for the local UAV based on its high-level understand-
ing of the probed network information up to that point. Our
algorithm for the global UAV case comprises three steps: 1)
fundamental route stitching, 2) network partitioning, and 3)
prioritizing grid vertexes for connecting isolated partitions, as
illustrated in Fig. 3.

First, global UAVs construct the underlying network topol-
ogy by stitching all the partial ad-hoc routing paths collected
during network probing based on [7]. The partial ad-hoc
routing paths are the ones that each global UAV has directly
obtained, or the ones that it has received from other encoun-
tered UAVs.

Second, we let global UAVs perform high-level network
partitioning where locally adjacent nodes with good network
connection belong to one partition, called strongly connected
component in graph theory [2], [10]. Strongly connected
component can be more formally defined as a graph that
every vertex is reachable from other vertexes. This means that
every possible source-to-destination pair within a component
has at least one valid route. In this environment, we focus
on finding out effective vertex positions where local UAVs
can be deployed as relays, and otherwise isolated components
can be connected each other by creating new effective routes
through the deployed UAV relay. In this way, connecting two
components can significantly enhance routing performance
by having routes from source nodes in one component to
destination nodes in another component.

Third, based on the high-level partitioned network informa-
tion, the global UAV decides a deployment vertex candidate
list. It first calculates how much one component is strongly
connected within itself by calculating the component priority
as the number of edges divided by the number of nodes within
the component. Then, the global UAV finds out all possible

Algorithm 1 Global UAV
1: Input: currentVertex, pairingState
2: Output: nextVertex, pairingState
3: if (any UAVs within radio range) then

4: Share visiting history and global network information;
5: if (encountered UAV is local UAV, local) then

6: if (# of my pairs<N)&&(local.pairingState==‘unpaired’) then

7: Make a new pair with local;
8: Process recommendation;
9: else if (pairingState==‘paired’)&&(local is one of my pairs) then

10: Initialize pairing time window to W ;
11: Process recommendation;
12: end if

13: end if

14: end if

15: if (pairingState == ‘unpaired’) then

16: zigzagTrajectory = zigzag patten that starts with an unvisited vertex
based on L1 and L2;

17: if (zigzagTrajectory == ;) then

18: Done;
19: end if

20: nextVertex = the first vertex of zigzagTrajectory;
21: else

22: for (i = 1; i n; i++) do

23: encirclingTrajectory = unvisited i-hop vertexes from candidates;
24: if (encirclingTrajectory 6= ;) then

25: nextVertex = the first vertex of encirclingTrajectory;
26: break;
27: end if

28: end for

29: if (i > n) then

30: pairingState = ‘unpaired’;
31: Regenerate zigzagTrajectory;
32: nextVertex = the first vertex of zigzagTrajectory;
33: end if

34: end if

35: Process UAV-to-Ground path probing;

two component pairs that are reachable via one grid vertex
and chooses one pair of two components with the highest
component priority summation among the pairs. Once the
global UAV obtains one pair of two components with the
highest priority for connection, it lists up all possible grid
vertexes through which two components can be bridged.

As long as the global UAV keeps the pairing relation-
ship with a local UAV, it can repeatedly recommend new
deployment vertex candidates to the local UAV whenever
encountering it again. A more detailed procedure for global
UAVs is described in Algorithm 1.
B. Local UAVs

Local UAVs explore the disrupted network with a short
stride along a greedy local encircling trajectory. Without any
global knowledge of the disrupted network, it would be impor-
tant to make the best effort to find out a locally disconnected
area and be deployed at it for a progressive optimization.

Before a local UAV encounters any global UAV, it collects
network probing packets at its visiting grid vertex and updates
its own local-inf-table, which contains necessary information
to calculate the percentage of source-to-destination pairs with
no valid routes at each vertex. Whenever visiting a grid vertex,
it finds out reachable stationary nodes as long as they are con-
nected with multiple hops. Then, it calculates the percentage of
the number of source-to-destination pairs with no valid route
out of all possible node-to-node pairs. This metric implies a
relative route defect at a vertex. A vertex with the highest

Algorithm 2 Local UAV
1: Input: currentVertex, pairingState, deployState
2: Output: nextVertex, pairingState, deployState
3: if (any UAVs within radio range) then

4: Share visiting history and local network information with local-inf-
table;

5: if (encountered UAV is a global, global) then

6: if (pairingState==‘unpaired’)&&(global.pairNum<N) then

7: Make a new pair with global;
8: Update its candidate list;
9: else if (pairingState==‘paired’)&&(global is my pair) then

10: Initialize pairing time window to W ;
11: Update its candidate-list;
12: end if

13: end if

14: end if

15: if (pairingState == ‘unpaired’) then

16: futureTrajectory = unvisited vertexes surrounding centerVertex;
17: while (futureTrajectory == ;) do

18: newCenterVertex = selected vertex based on local-inf-table;
19: futureTrajectory = unvisited vertexes surrounding newCenterVertex;
20: if (newCenterVertex == centerVertex) then

21: deployState = ‘deployed’;
22: Deployed to centerVertex and wait;
23: end if

24: end while

25: nextVertex = the first vertex of futureTrajectory;
26: Calculate (# of no valid routes / # of possible src-dst pairs);
27: Update its local-inf-table;
28: else

29: futureTrajectory = unvisited vertexes in candidate-list;
30: if (futureTrajectory == ;) then

31: Deploy to the worst vertex based on global-recommend-table;
32: else

33: nextVertex = the first vertex of futureTrajectory;
34: Calculate priority1 and priority2;
35: Update its global-recommend-table;
36: end if

37: end if

value of the route defect metric has the highest priority to be
deployed at. The local UAV traverses from a centerVertex and
finds out a vertex with the highest priority. When the latest
centerVertex is the same as its previous centerVertex, it starts
to be deployed at the vertex and acts as a relay. The locally
deployed UAV stays being deployed until it becomes paired
with a global UAV.

Once a local UAV encounters a global UAV within its radio
range, it checks whether the global UAV can accommodate to
accept an additional pair request. After a successful pairing
approval from the global UAV, the local UAV receives globally
optimal deployment candidate vertexes from the global UAV.
Given the candidate vertexes, the local UAV calculates two
criterion metrics for each vertex. The first metric, priority1
quantifies how many strongly connected components can be
connected through the vertex if deployed there. A vertex that
can connect with a larger number of components should be
considered as a higher priority to be selected as a deployment
vertex. The second metric, priority2 measures how much
the directly connected stationary nodes residing in separate
components retain the centrality of the belonged component.
We calculate the closeness centrality in a connected graph
as the inverse sum of the length of a path from one node
to another in the graph. A vertex with a higher closeness
centrality should get higher attention to be selected as a
deployment vertex. One vertex with the highest priority1 is

selected as a deployment vertex. If there are multiple vertexes
with the same highest priority1, then we select a vertex that has
the highest priority2 among them. Similar to the unpaired case,
the local UAV stays being deployed until its currently paired
global UAV recommends a new candidate list if encountered.

In case that two or more local UAVs are determined to
be deployed at the same vertex, the UAVs start negotiation
process: for unpaired-unpaired and unpaired-paired cases, one
of unpaired local UAVs leaves the current deployment vertex
to another vertex located at the second place in its local-
inf-table. This is because another paired local UAV would
rather be deployed at the current deployment vertex based on
its paired global UAV’s recommendation, not based on some
myopic local information on the unpaired local UAV side.
For the paired-paired case, a local UAV that has more vertex
candidates as the second choice flies to the vertex from the
current duplicated vertex. In case that there is no second choice
to replace the current duplicated vertex, it just randomly selects
one of adjacent vertex with the highest priority based on its
local-inf-table. A more detailed procedure for local UAVs is
described in Algorithm 2.

V. EVALUATION
We validate our proposed algorithm in a network of 218

stationary ad-hoc nodes over the RoI of 465 ⇥ 465 m2 as in
Fig. 3 where wireless links with packet reception rate larger
than or equal to 75% are shown. To simulate a disrupted
network after a disaster event, we make its sub-network
isolated so that 74.95% of source-to-destination pairs have no
existing route. A combined path-loss shadowing model with a
path-loss exponent of 3, a reference loss of 46.66 dB, and an
additive white Gaussian noise N(0, 52) in dB is used as the
wireless propagation model.

In our experiments, the virtual coordinate of 256 vertexes
with m = 16 is used so that the geographic distance between
two adjacent vertexes is within the communication range. We
assume that UAVs fly at the height of 9 m with a speed of
11.1 m/s (as per Parrot AR.Drone 2.0). It is also assumed that
the zigzag trajectory for global UAVs is with the height L1
of 10 and the width L2 of 2, while the encircling trajectory is
extended up to 4 hops where n is 4. For the pairing process,
the pairing time window W of 280 sec is used, and a global
UAV can accommodate up to 6 local UAVs at the same time.
Regarding the usage of path stitching, the network probing
packets are allowed to be passed up to 1 hop, which has been
proved to be effective in [7]. We run 10 simulations for each
experiment to obtain a statistically meaningful result and show
the average performance.

Our evaluation is divided into four parts. First, we inves-
tigate steady-state network recovery performance as we can
use more local or global UAVs. Second, we evaluate dynamic
network recovery performance in terms of the number of
source-to-destination pairs with no existing route over time.
We compare our proposed algorithm against our previous
work DroneNet+. We also devise a centralized version of
our algorithm assuming that the algorithm runs on top of
the global knowledge of all probed routes and their strongly

1 2 3 4 5 6
of Local UAVs

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f s
rc

-d
st

 P
ai

rs
w

ith
 N

o
R

ou
te

 (%
)

0

200

400

600

800

1000

1200

U
AV

 D
ep

lo
ym

en
t T

im
e

(s
ec

)

Percentage
Time

(a) Performance with respect to the
number of local UAVs with one global
UAV

1 2 3 4
of Global UAVs

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f s
rc

-d
st

 P
ai

rs
w

ith
 N

o
R

ou
te

 (%
)

0

200

400

600

800

1000

1200

U
AV

 D
ep

lo
ym

en
t T

im
e

(s
ec

)

Percentage
Time

(b) Performance with respect to the
number of global UAVs with 5 local
UAVs

Fig. 4. Steady-state routing hole percentage and deployment completion time
performance

0 200 400 600 800 1000 1200 1400
UAV Travel Time (sec)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f s
rc

-d
st

 P
ai

rs
w

ith
 N

o
R

ou
te

 (%
)

Ours
DroneNet+
No recovery
Centralized

Fig. 5. Dynamic routing hole percentage over time with 5 local UAVs and
one global UAV
connected components over the entire RoI, serving as an ideal
upper bound of our proposed algorithm. Third, we examine
how much routing performance is improved due to each
different deployment decision from the local UAV itself or
its paired global UAV’s recommendation. Lastly, we quantify
computation complexity in terms of running time.

We explore steady-state network recovery performance in
terms of network hole percentage as we increase available
number of local or global UAVs. We quantify network hole
percentage in terms of the number of source-to-destination
pairs with no existing route and required time to reach at
the steady-state as in Fig. 4. As the number of local UAVs
increases, the network hole percentage decreases as shown in
Fig. 4(a). Deploying more local UAVs as relays helps to dra-
matically reduce the number of critical network holes. On the
other hand, the steady-state time for deployment completion
increases since more local UAVs need to be deployed.

As we use more global UAVs, network hole percentage
is not affected since they do not act as relays, but rather
provide deployment guidance to local UAVs in the network
as in Fig. 4(b). However, using more global UAVs contributes
to finishing the total UAV deployment completion earlier by
recommending globally optimal deployment positions to local
UAVs more frequently.

We investigate dynamic network recovery performance over
time in terms of network hole percentage. We run 10 sim-
ulations starting from a randomly selected vertex for each
round and show one of the results that represents the general
case. As in Fig. 5, our algorithm progressively finds a way to
improve routing performance over time by utilizing a mixture
of local and global deployment optimization. The network hole

45 90 135 180 225
RoI Radius (m)

0

5

10

15

20
R

ou
tin

g
Pe

rfo
rm

an
ce

Im
pr

ov
em

en
t w

ith
in

 R
oI

 (%
)

(a) Localized routing performance
improvement using local greedy de-
ployment with 5 local UAVs

Local Global
Type of UAVs

0

2

4

6

8

10

R
ou

tin
g

Pe
rfo

rm
an

ce
Im

pr
ov

em
en

t (
%

)

(b) Global routing performance im-
provement with a local UAV and a
global UAV

Fig. 6. Routing performance improvement by local and global deployment

percentage of our work is given by 52.2%, whereas DroneNet+
leads to 64.5% based on one-shot decision after spending 347
seconds for network traversing and deployment. Specifically,
our algorithm starts performing local optimization for all 5
local UAVs at 59 seconds, showing some minor improvement.
At 230 seconds, a global optimization for one local UAV by
its paired global UAV has been executed, drastically reducing
the percentage of source-to-destination pairs with no route
from 71.1% to 54.7%. Right after that, the local UAV gets
another global deployment recommendation from its paired
global UAV again, and leaves the current deployment position
for the newly recommended position, making the network
temporarily return back to the previous before-deployed status.
At 294 seconds, the local UAV starts being deployed at a
globally recommended position again. The upper bound of our
algorithm, which is a centralized version, Centralized drops
network hole percentage down to 42.1%. Since our algorithm
runs in a purely distributed manner, 10% performance gap can
be a reasonable and expected result.

Now we analyze how routing performance is improved by
each feature of local or global deployment decision on our
algorithm in a more detail. We quantify routing performance
improvement in terms of network hole reduction in a local
confined area by controlling the RoI radius. Considering
source-to-destination pairs within the RoI, local greedy de-
ployment decision by local UAVs improves localized routing
performance as in Fig. 6(a). As the RoI area increases, rout-
ing performance improvement within localized area becomes
mediocre. On the other hand, for the entire network perfor-
mance, global recommendation-based deployment contributes
to routing performance improvement more effectively with a
factor of 9.68, compared to local greedy deployment as in
Fig. 6(b).

Lastly, we examine computation complexity in terms of
running time. As varying the number of local UAVs deployed
in the network, we measure execution time for running our
algorithm, compared to DroneNet+. As can be seen in Fig. 7,
our work offers a practically feasible solution even in compu-
tation complexity while outperforming routing performance.

VI. CONCLUSION
We have presented a route reconstruction algorithm based

on distributed network diagnosis and progressive relay node
placement using UAVs. For the diagnosis of a destructed
network, we have used two types of UAVs, global UAVs
traverse with a long stride and probe high-level information,

1 2 3 4 5
of Deployed UAVs

0

5

10

15

20

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

Ours
DroneNet+

Fig. 7. Computation complexity in terms of running time with respect to
the number of deployed UAVs

while local UAVs traverse with a short stride and collect
information in detail. During their fully distributed traversing
with their best effort, encountered global and local UAVs can
make a pair and find progressively more optimized deployment
places in a collaborative way. Global UAVs capture high-level
network topology and recommend better places to their paired
local UAVs. Local UAVs iteratively change their deployment
place with or without the help of global UAVs, reconstructing
end-to-end routing path in a progressive manner.

We have demonstrated that our algorithm effectively re-
constructs network connectivity in terms of steady-state and
dynamic routing performance. Also, our experiment results
show that both local and global deployment decisions play a
synergistic role in minimizing network hole percentage and
improving end-to-end route repair.

For future work, we may relax designated roles for global
and local UAVs so that a general UAV can act as a local
or a global UAV from time to time depending on dynamic
network status. Also, it would be interesting to consider
external limitation such as battery outages or UAV failures
for designing a more practical algorithm.

REFERENCES

[1] X. Cheng, D.-Z. Du, L. Wang, and B. Xu. Relay sensor placement in
wireless sensor networks. Wirel. Netw., 14(3):347–355, June 2008.

[2] T. H. Cormen. Introduction to algorithms. MIT press, 2009.
[3] Z. Han, A. L. Swindlehurst, and K. J. R. Liu. Smart deploy-

ment/movement of unmanned air vehicle to improve connectivity in
MANET. In IEEE WCNC, 2006.

[4] D. Jeong, S. Y. Park, and H. Lee. DroneNet: Network reconstruction
through sparse connectivity probing using distributed UAVs. In IEEE
PIMRC, pages 1797–1802, Aug 2015.

[5] S. Lee and M. Younis. Optimized relay node placement for connecting
disjoint wireless sensor networks. Computer Networks, 56(12):2788–
2804, 2012.

[6] E. L. Lloyd and G. Xue. Relay node placement in wireless sensor
networks. IEEE Transactions on Computers, 56(1):134–138, Jan 2007.

[7] S.-Y. Park, D. Jeong, C. S. Shin, and H. Lee. DroneNet+, adaptive route
recovery using path stitching of UAVs in ad-hoc networks. In 2017 IEEE
Global Communications Conference (GLOBECOM). IEEE, 2017.

[8] F. Senel and M. Younis. Relay node placement in structurally damaged
wireless sensor networks via triangular steiner tree approximation.
Computer Communications, 34(16):1932–1941, 2011.

[9] I. F. Senturk, K. Akkaya, and S. Yilmaz. Relay placement for restor-
ing connectivity in partitioned wireless sensor networks under limited
information. Ad Hoc Networks, 13:487–503, 2014.

[10] R. Tarjan. Depth-first search and linear graph algorithms. SIAM journal
on computing, 1(2):146–160, 1972.

[11] G. Tuna, B. Nefzi, and G. Conte. Unmanned aerial vehicle-aided
communications system for disaster recovery. Journal of Network and
Computer Applications, 41:27–36, 2014.

[12] J. Yoon, Y. Jin, N. Batsoyol, and H. Lee. Adaptive path planning of
uavs for delivering delay-sensitive information to ad-hoc nodes. In IEEE
Wireless Communications and Networking Conference (WCNC), 2017.

