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Abstract—We consider the problem of path planning using
multiple UAVs as message ferries to deliver delay-sensitive
information in a catastrophic disaster scenario. Our main goal
is to find the optimal paths of UAVs to maximize the number of
nodes that can successfully be serviced within each designated
packet deadline. At the same time, we want to reduce total travel
time for visiting over a virtual grid topology. We propose a
distributed path planning algorithm that determines the next visit
grid point based on a weighted sum of travel time and delivery
deadline. Together with path planning, we incorporate a task
division mechanism that collaboratively distributes the unvisited
grid points with other UAVs so that the entire travel time can
substantially be reduced. Simulation results demonstrate that our
distributed path planning algorithm mixed with task division
outperforms all baseline counterpart algorithms in terms of on-
time service node rate and total travel time.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have been considered
to be a new form of aviation, playing various roles: aerial
surveillance and monitoring [3], transporting packages [15],
and communication relays for network reconstruction [7].
Several key features of UAVs are deployment flexibility, re-
programmable architecture, and less constrained movement.

In a catastrophic disaster situation, users may be
communication-wise isolated due to the collapsed infrastruc-
ture network. The usage of UAVs can be a rescue for delivering
location-sensitive and time-sensitive information to the nodes
in a certain affected area. For example, evacuation plan varies
across location, and its door-to-door information delivery from
a disaster control center to local nodes via UAVs can be a very
promising approach under network outage.

The problem of path planning has been investigated in
robotics and operation research communities under the names
of vehicle routing problem (VRP) [4], [9] and traveling
salesman problem (TSP) [6], [11]. These approaches tackle
the problem with optimization techniques by formulating into
linear programs with relaxation. Some genetic algorithm-based
approaches have been proposed for UAV path planning [1],
[12]. Related to the path planning with deadline constraints,
some researchers have studied deadline-TSP [2] and VRP
with time window [13]. Although the classic TSP and VRP
problems have been well explored considering time con-
straints, they usually suffer from NP-hardness or centralized
computation. Further, they have not explicitly co-optimized

†HyungJune Lee is the corresponding author.

both deadlines to each node and entire traversal time with
multiple vehicles.

This paper presents a distributed path planning algorithm
with time constraints using multiple UAVs. We design a
practical framework for UAVs to traverse over a virtual grid
topology. A UAV can deliver data directly to locally con-
nectable nodes with the one hop air-to-ground transmission at
each grid point. By borrowing some ideas from the Minimum
Weighted Sum First (MWSF) scheduling and the Earliest
Deadline First (EDF) with k-lookahead [14], we propose a
path planning scheduling algorithm that can be applicable
to this framework under delivery deadline and traversal time
constraints.

To leverage multiple UAVs to deliver time-sensitive and
location-sensitive data, we provide a collaborative visit task
division for the UAVs to perform during the encounter in the
middle of their mission. The fair task division can achieve the
evenly distributed traversal over UAVs with a full utilization of
multiple UAVs, eventually contributing to reducing the entire
traversal time over region of interests (RoI).

The remainder of this paper is organized as follows: After
presenting the system model in Sec. II, we present our dis-
tributed path planning scheduling algorithm in Sec. III and our
collaborative task division mechanism for UAVs in Sec. IV.
We validate our approaches based on simulations in Sec. V,
and finally conclude this paper in Sec. VI.

II. SYSTEM MODEL

We consider a path planning problem for UAVs to deliver
delay-sensitive information to each different ad-hoc node.
In disaster scenarios, the entire communication infrastructure
may be collapsed, and some urgent information such as cus-
tomized evacuation and status progress dependent on location
should be delivered to each affected node, respectively, with
the help of UAVs. We use multiple UAVs to carry node-
specific information obtained from a disaster control center
to the nodes. Our goal is to find the optimal paths of UAVs
to maximize the number of nodes that successfully receive
data that is supposed to be delivered from a UAV within a
given distinct time deadline. At the same time, we want to
minimize total travel time for traversing all relevant nodes to
which UAVs have data to deliver respectively.

We assume that a UAV can communicate with terrestrial
ad-hoc nodes or with other UAVs using a wireless radio (e.g.,



Fig. 1. System overview with distributed path planning and collaborative task
division among multiple UAVs.

802.11 or 802.15.4). We let UAVs traverse over a virtual grid
topology. When a UAV stays at a virtual grid point on the fly,
it starts communicating with terrestrial ad-hoc nodes within
its radio range. It is assumed that the virtual grid topology
and the communicable ad-hoc node list at each grid point are
prior knowledge to UAVs. If there exist multiple grid points
that can be communicated with a node, a UAV can deliver
data to the node at any of these grid points. A UAV makes
movement progress based on its own distributed navigation
decision, while not being aware of movements of other UAVs.
It should be noted that battery outage, UAV collision, and
navigation control issues (e.g., upon encountering static or
mobile obstacles) are out-of-scope in this paper.

Each UAV maintains the list of visited grid points, and
shares it with another UAV each other when they encounter
on the fly within radio range. Our proposed path planning
algorithm consists of two parts: 1) distributed path planning
(Sec. III) and 2) collaborative task division for unvisited grid
points among encountered UAVs (Sec. IV) as in Fig. 1.

III. DISTRIBUTED PATH PLANNING
In the emergency situation of network outage due to disas-

ters, information imbalance with respect to the urgency level
and the location deteriorates the damage condition. It is of
great significance to secure an alternative way to communicate
from a disaster control center directly to local nodes for
distributing both deadline and location sensitive data. Using
UAVs as message ferries, a full coverage over all virtual grid
points using multiple UAVs for delivering a corresponding data
to each node at a designated grid point should be efficient.

UAVs make their own independent navigation decisions
among unvisited grid points. If two UAVs become closer
within radio range during their navigation, they are allowed to
exchange visited grid points so that the duplicated coverage is
prohibited as much as possible.

We propose a distributed path planning algorithm for UAVs
to traverse virtual grid points. The goal of our algorithm is
twofold: 1) maximizing the percentage of nodes that have
successfully received data within its designated deadline con-
straint, and 2) reducing the total traversal time to cover all
of grid points with multiple UAVs. Each UAV continues to
generate its own optimal path until it serves all of the nodes
with the remaining deadline.

We exploit three main factors to control our path planning:
1) travel time from a grid point to another, 2) the number of
nodes that can be serviced at a grid point, and 3) delivery
deadline for each node. We introduce several notations to
denote the distance between grid points a and b as d(Ga, Gb),
and the UAV flying speed as v̄uav . Also, the packet delivery
deadline for node i is denoted as TNi , and TNi decreases as
time passes.

We adopt a variant of the weighted sum consisting of the
travel time and the delivery deadline by referring to [14].
We apply the urgency metric not into the level of nodes,
but into the level of grid points. This is due to the fact
that a UAV makes its movement progress over the grid-
based topology. When a UAV is deployed at grid point
i, there exist nodes within their radio range from the air,
i.e., ⌘Gi = {Nn1 , Nn2 , . . . , Nnl}. Also, a single node can
receive data from any grid points within radio range, denoting
that node j can be communicated with a set of grid points
 Nj = {Gg1 , Gg2 , . . . , Ggm}.

We calculate the weighted sum-based urgency measure
for all possible pairs of the unvisited grid point and its
communicable node as follows:

w(Gi, Nj) = ↵ · TNj + (1� ↵) · d(Gcurrent, Gi)/v̄uav (1)

where Gcurrent is the currently visiting grid point, Gi is a
candidate grid point i, Nj 2 ⌘Gi for grid point i and node j,
and ↵ is a weight parameter on the packet delivery deadline.

Each UAV runs the path planning algorithm in a distributed
manner to find k grid points to visit for the next traversal
at the currently visiting grid point. After obtaining the k
future grid points to visit, it finally selects an optimal visiting
order over k! permutation cases, similar to [14]. Any nodes
with deadline expired during the mission are excluded for the
path planning decision. Once a UAV moves to the next grid
point, it continues to run the aforementioned procedure, while
refreshing the k future grid points to visit.

A. Selecting Next k Grid Point Candidates to Visit

To select the next k grid point candidates to visit, we
calculate the weighted sum-based urgency measure for all
unvisited grid point-to-node pairs at the currently visiting grid
point, and pick up k grid points with the k lowest values.

In case of having more grid points than expected due to
multiple points with the same value, we choose the ones that
are physically closer to the currently visiting grid point.

If the above second criterion does not still rule out ambi-
guities, we make the k grid point selection with respect to
the expected number of nodes to be serviced within their own
packet deadline if visited. For any other remaining cases, we
randomly select k grid point candidates out of the remaining
candidates.

B. Establishing a Visiting Path over the Selected k Grid Points

Given k grid points to visit for the next traversal, we iterate
over k permutations to conjecture all possible paths. We first
probe which permutation to have the maximum number of



nodes to be serviced within their packet deadline over the
entire selected path. Second, we calculate the expected travel
time for each possible visiting order, and obtain the lowest
one. We apply the above two criteria in priority.

If two criteria do not result in only one path, we pick up
the path that has the closest distance to its first next visiting
grid point over the path from the currently visited grid point,
and then choose the path with the maximum number of nodes
to be serviced at the first next visiting grid point. If we cannot
still get the only one visiting path even with the last criterion,
we randomly choose one out of them.

The complete path planning procedure is described in
Algorithm 1. The computation complexity of the path planning
algorithm is given by O(k! ·nk) where n is the number of all
communicable nodes in a visiting grid point.

Algorithm 1 Distributed Path Planning Algorithm
1: Input: Current location of UAV, allocated grid point list
2: Output: Next grid point to move

// I. Select next k grid point candidates to visit
3: calculate weighted sum w(G,N) for all unvisited grid point G and node

N pairs;
4: add at most k grid points of (G,N) with the lowest w(G,N) to candidate

list candi;
5: while (# of selected grid points in candi < k) do
6: for (G

i

= [grid points of (G,N) with minimum w(G,N) among grid
points not in candi]) do

7: if (multiple k grid points of (G
i

, N) have minimum w(G
i

, N))
then

8: if (multiple G
i

have shortest d(G
current

, G
i

)) then
9: if (multiple G

i

have same # of communicable nodes) then
10: add random grid point G

i

to candi;
11: else
12: add G

i

which has maximum # of communicable nodes to
candi;

13: end if
14: else
15: add G

i

to candi whose d(G
current

, G
i

) is the shortest;
16: end if
17: end if
18: end for
19: end while

// II. Establish a visiting path over the selected k grid points
20: for (all permutation paths of k grid points in candi) do
21: calculate # of nodes serviced in deadline and travel time for each path;
22: end for
23: if (multiple paths have maximum # of nodes to be serviced) then
24: if (multiple paths have minimum travel time among paths above) then
25: if (multiple first next visiting G

i

have same d(G
current

, G
i

) from
among paths above) then

26: if (multiple first next visiting G
i

have maximum number of N
to be serviced) then

27: select random path;
28: else
29: select path with the maximum number of N to be serviced

at the first next visiting G
i

;
30: end if
31: else
32: select path that has the closest d(G

current

, G
i

) to its first next
visiting G

i

;
33: end if
34: else
35: select path with minimum travel time;
36: end if
37: else
38: select path with maximum # of nodes to be serviced;
39: end if

select first visiting grid point of selected path as G
next

to move;

IV. COLLABORATIVE TASK DIVISION

Our path planning algorithm is continuously run to deter-
mine the next visit grid point whenever a UAV arrives at a grid
point. When two or more UAVs encounter during their flight,
they exchange their own visited grid point list one another and
update the shared visit information to their own visited grid
point list. The path planning algorithm itself generates its next
suitable path that avoids the duplicate coverage by referring
to the updated visited grid point list. However, it does not
explicitly consider the following aspects: how many unvisited
grid points should be covered by each different UAV, and how
the remaining unvisited grid points are geographically located
relatively to the current positions of UAVs.

Given that UAVs become aware of the remaining unvisited
grid points after sharing their own visit list, they may un-
dertake a more aggressive decision of how the unvisited grid
points should be distributed to themselves, respectively. Our
goal is to minimize the longest traversal time of a UAV that
turns out to be the total coverage time using multiple UAVs.
We want to make geographically similar clusters of unvisited
grid points such that each UAV is assigned to the most relevant
group and performs its path planning algorithm only over the
well selected unvisited grid point group.

We strive to utilize several existing clustering techniques
including K-means clustering [8] and a balanced K-means
clustering [5] to embed into our task division mechanism. We
demonstrate how a task division mechanism can contribute to
further improving the path planning performance. It should be
noted that we do not constrain ourselves to a certain clustering
algorithm; any other more suitable clustering technique can be
applied to our proposed mechanism.

When UAVs encounter in the air within radio range, they
share the already-visited grid point list. The UAV that initiates
this sharing procedure operates as a master UAV, which
performs the task division mechanism and shares the assigned
task results with the other UAVs. This task division procedure
is continuously executed upon subsequent UAVs’ encounter
events by running the following clustering algorithm.

A. Naive Clustering
We devise the most naive clustering algorithm called Clos-

est. Given the geographical locations of all the unvisited grid
points that have nodes to service, shared by the encountered
UAVs, we calculate the geographical distance between an
unvisited grid point and each UAV candidate and assign
the closest UAV for covering the unvisited grid point. After
calculating all the unvisited grid points, each UAV is assigned
to a subset of unvisited grid points, and all the encountered
UAVs collaboratively cover all the unvisited grid points.

B. K-means Clustering
We leverage one of the most popular clustering techniques,

K-means clustering technique [8] to our task division mecha-
nism. Assuming that K UAVs need to be assigned to unvisited
grid points, we apply the K-means clustering with K number
of centroids based on the distance measure in geographical



(a) After K-means clustering (b) After balanced K-means clustering

Fig. 2. Geographical distribution of unvisited grid points belonging to their
governing UAV after task division using 5 UAVs. Each grid point is marked
with a potential map with respect to the number of available nodes to access.

locations of unvisited grid points. After all the unvisited grid
points are assigned to one of K centroids, we find the UAV-to-
centroid pairs that provide the minimum deviation in distance.
We let all the mapped UAVs cover their assigned unvisited
grid points (e.g., as in Fig. 2(a)).

C. Balanced K-means Clustering
To fully utilize multiple UAVs to reduce the total traversal

time, it is important for each UAV to cover the similar number
of visiting grid points, while considering the deviation of the
travel distance among UAVs. To achieve the fair task division
over multiple UAVs, we adopt a classic balanced K-means
clustering algorithm [5].

It forces the maximum number of pre-allocated slots per
cluster, which is Ngrid/K where Ngrid is the total number
of unvisited grid points, and K is the number of UAVs
and also the number of clusters. We perform a variant of
the K-means clustering procedure by using the Hungarian
method to calculate the pairwise distance metric and obtain
the minimal edge weight pairing. After the continuous iteration
procedure converges, we assign each centroid for a cluster to
the closest UAV. Finally, all the unvisited grid points are evenly
distributed to UAVs for the next traversal (e.g., as in Fig. 2(b)).

V. EVALUATION

We validate our path planning algorithm combined with
collaborative task division in a simulated network of 300
randomly deployed nodes over a territory area of 300⇥300m2

as illustrated in Fig. 3. We use a virtual grid topology of 16⇥16
with the distance of 20m between grid points. We randomly
generate the packet delivery deadline for each respective
ad-hoc node from the uniform distribution on the interval
[30s, 90s] for an urgent delivery scenario and on the interval
[370s, 430s] for a relatively deadline-relaxed delivery scenario.
As in Table I, the flying speed of UAVs is 12m/s [10], and the
flying height is 7m. The communication radio range of UAVs
and ad-hoc nodes is given by 30m (e.g., low-power wireless
such as 802.15.4). We let UAVs initiate their mission from
fixed grid points nearby the center of the simulated territory
area.

We evaluate the efficiency of path planning performance in
terms of on-time serviced node percentage and travel time of
UAVs. We quantify the on-time serviced node percentage as
the total percentage of nodes that have successfully received

Simulation Environment
Territory area 300⇥300m2

# of nodes 300
Grid size 20m

Packet delivery deadline 30 ⇠ 430s
UAV speed 12m/s

UAV flying height 7m
Communication radio range 30m

Simulation Parameter
# of UAV 1 ⇠ 4

Weight parameter ↵ 0.2
Permutation parameter k 2

TABLE I
SIMULATION ENVIRONMENT AND PARAMETER
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Fig. 3. A distribution map of the simulated network consisting of 300 ad-hoc
nodes (red circles) with 16⇥16 grid points (gray plus signs).

data within each respective packet deadline according to a path
planning algorithm. We measure the travel time of UAVs as the
longest travel time among UAVs for the entire traversal over
grid points with effective ad-hoc nodes in delivery deadline.
To obtain statistically meaningful results, we plot the averaged
values with standard deviation over 10 experiments. 4 UAVs
are used, unless otherwise noted.

After showing each performance our distributed path plan-
ning algorithm and our task division mechanism separately,
we explore the overall system performance.

A. Distributed Path Planning
We investigate our distributed path planning algorithm ex-

cluding the task division mechanism by varying the average
packet deadline with ±30 seconds in the uniform distribution.
We compare ours to several baseline counterpart algorithms of
Random, Nearest, and mTSP-GA [16] as shown in Fig. 4(a).
Random algorithm randomly determines the next visiting grid
point, while Nearest algorithm attempts to go to the nearest
grid point from the currently visited grid point. We also
compare our algorithm with mTSP-GA, which is a multiple
traveling salesman problem with genetic algorithm, applying
it into our simulation environment. To purely explore the
efficiency of path planning algorithms, only one UAV is used.

Regarding on-time serviced node percentage, our algorithm
outperforms all the other algorithms. To compare ours with
Nearest algorithm, Nearest algorithm considers only travel
time based on geographical distance between the currently
visiting grid point and the next candidate point, whereas our
algorithm co-optimizes both measures. Although mTSP-GA
algorithm does not explicitly consider the deadline constraint,
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(a) On-time serviced node percentage
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(b) Travel time
Fig. 4. On-time serviced node percentage and travel time of path planning
algorithms with respect to initial service deadline.
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Fig. 5. Grid point coverage rate per UAV using each different clustering
algorithm for task division.

and thus the evaluation may not be a fair comparison, we just
show how its time-related performance behaves.

We explore how each path planning algorithm has an
effect on the travel time of a UAV in Fig. 4(b). Under the
service deadline range from 30 seconds to 200 seconds, all
of the algorithms show the similar performance. It should be
noted that since we let each path planning algorithm exclude
deadline-expired nodes for travel decision, our algorithm has
indeed serviced more nodes, while spending similar travel
time. Beyond the range corresponding to a deadline-relaxed
scenario, our algorithm and Nearest algorithm lead to the
shortest travel time to cover the whole network. The reason
that mTSP-GA incurs very high travel time is that there still
remain many unvisited nodes to service even with a larger
service deadline case due to the inherent lack of timely service
feature (as shown in Fig. 4(a)).

B. Collaborative Task Division
We evaluate how each different clustering algorithm affects

the overall task division performance as in Fig. 5. We quantify
what percentage of grid points are covered by a single UAV. To

(a) On-time serviced node percentage under an urgent delivery
scenario (with the deadline of [30s, 90s]) using 4 UAVs.

(b) Travel time under a deadline-relaxed scenario (with the
deadline of [370s, 430s]) using 4 UAVs.

Fig. 6. On-time serviced node percentage and travel time performance with
respect to path planning and task division types.

verify the one-shot task division performance in various envi-
ronments, we control the number of grid points to service out
of 16⇥16 points, which are covered by 4 UAVs. Both Closest
and K-means clustering algorithms show large deviations in
terms of service load per UAV, whereas the balanced K-means
clustering algorithm divides the number of grid points evenly
with UAVs, achieving the fairness among UAVs.

C. Overall System Performance
We now evaluate the whole system that incorporates both

path planning and task division mechanism. We have chosen
the best two path planning algorithms, our algorithm and
Nearest, based on the evaluation in Sec. V-A. We apply our
task division mechanism based on three different clustering
algorithms to each path planning scheme, compared to the
one without using any task division.

With regard to on-time serviced node percentage under a
tight deadline scenario as in Fig. 6(a), a good combination of
our path planning algorithm and balanced K-means clustering-
based task division achieves the highest on-time service rate
of up to 91%. It also demonstrates that any task division
procedure further improves on-time service rate for both our
path planing algorithm and Nearest up to 22% as opposed to
no task division case.

Next, we compare travel time for various combinations of
path planning and task division types in Fig. 6(b). To make
the fair comparison in terms of travel time, we focus on a
relatively large deadline scenario over [370s, 430s] by having
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(a) On-time serviced node percentage with the deadline of [30s, 90s].
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(b) Travel time with the deadline of [370s, 430s].

Fig. 7. On-time serviced node percentage and travel time performance with
respect to # of UAVs.

almost 100% on-time service node rate irrespective of path
planning. The usage of our path planning with task division
constructively reduces the travel time by 44%, compared to
the one without task division. On the other hand, the task
division mechanism with Nearest path planning does not
contribute to improving the performance in terms of travel
time. This implies that a proper mixture of path planning and
task division is a key to improve system performance.

Lastly, we assess system performance by varying the num-
ber of UAVs used as shown in Fig. 7. Our path planning
algorithm combined with the balanced K-means clustering-
based task division achieves the best performance in terms
of on-time service node rate and travel time. As the number
of UAVs used increases, our algorithm significantly increases
on-time service node rate, while lowering the required travel
time. This means that the usage of more UAV resource has
improved system performance.

VI. CONCLUSION

We have presented a distributed path planning algorithm for
UAVs to directly deliver data with delivery deadline constraints
to local ad-hoc nodes via a virtual grid topology. Upon
encountering other UAVs during its mission, we provide a
way of effectively distributing visit tasks, reducing the entire
traversal time of UAVs.

We have demonstrated that a good mixture of path planning
and task division can significantly improve the overall system
performance in terms of on-time service rate and travel time.

For future work, we may apply a proximity-based task
distribution for UAVs to gradually enlarge the navigation area
to obtain more locally optimized paths. It would also be
interesting to consider the battery outage issue during the UAV
mission to make more realistic refinement on path planning.
We may also reduce computation complexity for more scalable
path planning.
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