
13254 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 71, NO. 12, DECEMBER 2022

JointNIDS: Efficient Joint Traffic Management for
On-Device Network Intrusion Detection

Thi-Nga Dao and HyungJune Lee , Member, IEEE

Abstract—Data plane programmability enables the embedding
of a network intrusion detection system (NIDS) on programmable
switches to dynamically control the efficiency of attack type de-
tection and the overhead in the computation and network side.
However, it is a challenging task to implement a feasible embedded
detection model with advanced machine learning techniques such
as deep learning. It is due to the limited support provided by pro-
gramming languages on the data plane and the computing resource
constraints at the edge. We propose a joint traffic classification
architecture called JointNIDS that splits a classification model into
two sequential sub-models. In this model, the primary switch is
dedicated to major attack classification. The secondary switch is
used mainly for a further in-depth inspection of the rest of the
minor traffic types. The presence of some partially overlapping
hidden units in the two sequential switches can help to reduce the
computational overhead at the edge, while increasing the packet
inspection throughput. Experimental results on the P4 framework
demonstrate that JointNIDS has reduced attack detection time,
while achieving a similar accuracy performance, as other coun-
terpart algorithms. To further develop the proposed architecture,
JointNIDS implements an optimization step. It maximizes the
amount of data to be inspected by a system, taking into account
the constraints of computing resources and network bandwidth
for a given performance requirement. We validate the effectiveness
of collaborative joint optimization in various scenarios.

Index Terms—Anomaly Classification, joint detection, On-
Device AI, network intrusion detection system.

I. INTRODUCTION

A. Aim and Motivation

DUE to recent advances in Internet of Things (IoT) tech-
nologies, the IoT is playing an important role in various

emerging applications, such as smart cities, agriculture, manu-
facturing, and healthcare. Due to the lack of security methods in
IoT, there has been a tremendous increase in both cyber-attack
volume and data breaches. Therefore, to ensure the security and
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reliability of the IoT, it is important to quickly detect and classify
network threats. The problem of maximizing the amount of data
to be inspected and classified in a given IoT network is both
challenging and important.

Software-defined networks (SDN) separate the control plane
from the data plane and provide a fully programmable and dy-
namic network architecture that can be changed if needed [26].
Compared to traditional fixed-function switches, data plane
programmability allows operators to design customized packet
processing functions while reducing the time required to imple-
ment new functions or to modify the current protocol. Due to
the high flexibility and the reduction in detection time of this
approach, the implementation of the security method in the data
plane has attracted a lot of attention from both the researchers
and practitioners [19], [22], [23], [31].

When deploying the security model in the data plane, there
are several some main challenges. First, since programmable
switches have equipped with limited computing resource, the
traffic classification architecture should also be lightweight.
Second, the programming language (e.g., P4) used for the data
plane focuses on the packet forwarding function, thus suffering
from a lack of the mathematical operations needed for a machine
learning-based model. More specifically, only few operations for
integer and binary numbers are supported by the P4 language.

Therefore, to ensure the quick detection of network attacks,
we need a lightweight and accurate intrusion detection model
that can be fully implemented in the data plane. For the traffic
classification problem, the well-known traffic datasets [15], [21],
[27] show high imbalance between traffic attacks (i.e., there
are majority and minority classes). The number of packets in
each attack category is used to distinguish among attack types.
Attacks with a higher number of packets are called major groups,
while the remaining attacks belong to minority groups. Moti-
vated by this fact, in the proposed classification architecture,
some dominant traffic types are classified on the primary switch
by a specific sub-model that has much lower complexity than
the whole model. For minority classes, one of the remaining
sub-models is executed on a secondary switch. The reduction
of both model complexity and classification time in a balanced
way becomes more critical.

B. Related Work

With the aim of developing a lightweight security method,
a network intrusion detection system (NIDS) that couples a
stacked autoencoder with a network simplification technique
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was proposed in [5]. However, the implementation of NIDS on
the programmable data plane has not been considered and is still
an open issue to be addressed.

Most previous studies into network intrusion detection on
the data plane usually require an external traffic flow collector
(e.g., Cisco NetFlow or Huawei NetStream) connecting to the
switch to first extract the network information [8], [9], [13],
[33]. Then, the extracted features are used as the inputs to an
intrusion detection model that is based on a machine learning
technique such as support vector machine, random forest, or
neural networks) [2], [28], [34]. The use of the flow collector
outside the switch enables the use of the computing resource of
the external device. However, this approach also leads to high
detection latency due to the transmission delay from the switch
to the external collector.

To address the problem of the high detection delay incurred
by using the traffic flow collector, there are some studies into
the embedding of an intrusion detection function on the pro-
grammable data plane [6], [11], [29], [30], [36]. Several studies
focus on the detection of heavy hitters, which are defined as
network flows with extremely high volumes of traffic. Heavy
hitter detection has received considerable attention, since this
is a fundamental problem in many applications, including the
identification of denial-of-service (DoS) attacks and anomalies.

Some rule-based network intrusion detection models are em-
bedded in the data plane, in which a white-list of secure IP
addresses is implemented as a look-up table in the switch [19],
[23]. For example, in [23], when a packet has a matching entry
in the match-action table, this packet goes through the switch.
Otherwise, the second level of examination that links to the SDN
controller is considered.

There are some research into the detection of a specific type
of attack, such as DoS, based on the estimation of the entropy
of the source and destination IP addresses extracted from the
incoming packets [3], [7], [24], [32]. These methods seem to be
simple and feasible for the programmable data plane. However,
intrusion detection for other attack types using entropy-based
estimation needs further investigation since information about
IP address frequency may not be a good feature for identifying
other network attacks like man-in-the-middle or botnet.

Although a number of timely intrusion detection models on
the programmable data plane were introduced, a model that
considers the detection and classification of multiple network
attacks is needed. Advanced machine learning-based classifiers
such as neural networks with high classification performance
have not been considered in the data plane. It is due to the
limited support of programming languages for the data plane.
We aim to address these challenges by developing a lightweight
and accurate joint classification model on the data plane that can
detect and classify the data traffic with low detection latency.

By executing the same arithmetic operations for incoming
traffic, the existing detection models have treated dominant and
minority traffic labels equally. In contrast, this work takes traffic
label frequency into account. We design a collaborative joint
classification model for NIDS called JointNIDS, which requires
fewer operations for major traffic labels at a switch.

C. Contributions

In this work, we raise a key question: “Is there any way to
cooperatively classify network traffic using sequential switches
with resource constraints in an IoT environments?” To answer
the question, we propose a joint traffic classification architecture,
JointNIDS to effectively reduce model complexity and the la-
tency of intrusion detection. The main idea behind the proposed
architecture is that we decompose a classification model into
sub-models that can be executed on different switches. The
whole network consists of overlapping and non-overlapping
parts. The overlapping neurons are shared among switches
and the non-overlapping neurons are used only at a specific
switch. The collaborative learning architecture includes a pri-
mary switch and one or more secondary switches. When a
packet arrives at the primary device, this switch computes the
overlapping part and its non-overlapping parts to detect some
main traffic attacks. If the traffic is predicted to be one of these
types, the classification of the packet ends and there is no need
to use secondary switches. Otherwise, one of the secondary
switches is used to detect whether the packet belongs to a
different traffic type. The procedure is repeated until the traffic is
classified into a specific type. Due to the high imbalance of data
traffic, only the primary switch is required for traffic classifica-
tion most of the time. Therefore, the number of floating-point
operations (FLOPs) and the model complexity can be mitigated
to a considerable extent.

To evaluate the joint classification model, we first com-
pare the proposed architecture JointNIDS to existing models
in terms of classification accuracy and processing delay in the
programmable data plane. Then, we develop an optimization
problem to maximize the amount of data to be classified under
different constraints on computing resources, communication
cost, and classification accuracy. We assume that the number of
packets arriving at each switch follows a uniform distribution.
The completion ratio of the number of classified packets to the
number of generated packets is used as a performance metric to
evaluate the effects of the proposed joint classification model.
The salient contributions of our work are summarized as follows.
� We propose a collaborative learning architecture, Joint-

NIDS, for traffic classification that can be trained and
executed on programmable switches. It allows us to quickly
detect and classify network threats by reducing the model
complexity.

� Using a programmable data plane simulator, we determine
the optimal parameters for the proposed model, including
the overlapping ratio and network architecture. The classi-
fication accuracy and latency of our model are compared
with existing methods to show the effectiveness of joint
classification.

� An optimization problem is formulated to find the maxi-
mum number of packets to be managed, in two cases: with
and without joint classification models. The experimental
results show that using our proposed model produces more
effective traffic management than previous approaches.
JointNIDS meets the requirements for performance and
computing resources in a home IoT environment.
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TABLE I
COMPARISONS OF RELATED WORK WITH OUR WORK

Fig. 1. Intrusion detection system in the IoT network. Switches take in charge
of detecting abnormal traffic in the network.

II. SYSTEM MODEL

We consider heterogeneous IoT networks that connect IoT
devices for various applications such as smart homes, smart
agricultural systems or smart transportation systems as shown
in Fig. 1. Data packets generated by IoT devices are transmitted
to one or more IoT servers via multiple network switches in
series for environment monitoring and decision making. The
switches are connected using a bus, star, tree, ring, or mesh
network topology. As an example, a ring network topology
consisting of five switches is shown in Fig. 1.

As these switches are usually programmable, allowing them
to be fully customized to meet user needs, data packets can
be processed by the data plane, using, for example, the P4
programming language [4]. P4-supported switches can execute
data forwarding as well as network intrusion detection for in-
coming packets. We assume that an IoT network consists of S
switches that classify data traffic into different types: normal,
denial of service, man-in-the-middle, reconnaissance, botnet, or
other. Let Ni denote the number of packets arriving at switch
i per second (i = {1, 2, . . ., S} where S is the total number of
switches in the network topology). These packets belong to one
of the above-mentioned traffic types.

After arriving at a switch, incoming data packets are passed
through the packet header parser to extract their statistical
features, such as arrival rate and time elapsed from the last
appearance). These features are then fed into a detection model
to compute the probability of a network threat from the received
data packets. If the probability is greater than a certain threshold
value, then the defense system may take an action, such as
producing an alarm warning or packet drop, to prevent some
possible damages that may be caused by the detected threats.

Otherwise, data packets are considered to be normal, and should
be forwarded to a designated IoT server.

In this work, we aim to develop a system to quickly detect
and classify a possible intrusion, to facilitate early responses to
intrusion behaviors. It requires an efficient traffic classification
model to be implemented in the data plane. However, due to the
limited computing resources on the switch side, and the rapidly
increasing amount of traffic in the IoT environment, there is
a clear need for a lightweight NIDS architecture. It helps to
well adapt to the dynamically changing resource constraints and
traffic flows.

We propose a lightweight and joint classification architecture
that is suitable for networking devices with limited resources
in Section III, and an optimized traffic management strategy in
Section IV.

III. JOINT CLASSIFICATION OF TRAFFIC IN THE DATA PLANE

Neural networks (NNs) are machine learning models that
can accurately learn non-linear mappings from input features
to output values. Due to the high complexity of the architecture
of most NNs, it is challenging to implement an NN-based model
in the data plane at the limited-resource edge devices.

To effectively leverage a limited computational resource over
multiple switches, we decompose the whole NN-based model
into sub-models that can be trained and executed into mul-
tiple switches. Model decomposition or parallelism has been
described in the literature [10], [14], [16], [35]. However, the
existing model decomposition approaches distribute the com-
puting load onto multiple devices, without reducing the total
number of FLOPs. In the IoT environments, it is necessary
to reduce some redundant computation as far as possible, for
example by extracting some common computational parts from
the architecture.

We propose a unique model decomposition strategy that
allows fewer parameters to be exchanged between devices. It
transmits a subset of parameters relevant to several effective
neurons that can be shared by devices for training. These shared
neurons are called overlapping neurons.

The whole network is classified into two parts, overlapping
and non-overlapping. The overlapping parts are shared between
devices, while the non-overlapping parts are needed at each
specific device. There is usually an imbalance in the distribution
of the data between the dominant and non-dominant classes.

We divide the NN-based model in such a way that the most
frequent traffic classes are classified by a specific sub-model that
computes the overlapping units, and its own non-overlapping
units. If the traffic does not belong to one of the most dominant
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Fig. 2. The proposed joint traffic classification architecture JointNIDS. Pri-
mary and secondary switches compute the probability of dominant (y1) and
minority attacks (y2), respectively.

classes, another sub-model is needed at the next device. In the
following sub-model, its own non-overlapping units need to be
computed together with the overlapping parts inherited from the
prior sub-model. This step is repeated until the traffic is classified
into a specific class. In summary, the whole network is vertically
divided into a series of overlapping sub-models vertically. Each
sub-model is in charge of estimating the probability of traffic
classes.

We present a collaborative learning architecture of the NN-
based joint classification model with two sub-models, as illus-
trated in Fig. 2. The features extracted from the packet header are
fed into input units,x. The NN model is used to learn a non-linear
mapping from the inputs x to the outputs y, together with the
probability of attack types. It is supposed that the probability
of attack types depends upon a portion of the hidden units in
the previous layers. The first sub-model aims to predict the
attack probability of m1 classes, while the remaining (m−m1)
outputs are estimated by its following sub-model.

The joint traffic classification model learns the non-linear
mapping from the packet features, x, to the probability values
of traffic classes, y. We compute the activation function g using
the following relations:

h11 = g(x,w11, b11), (1)

h21 = g(h11, w21, b21), (2)

y1 = σ(h21, w31, b31), (3)

h12 = g(x,w12, b12), (4)

h22 = g (h11[nno,1 :] ∪ h12, w22, b22) , (5)

y2 = σ(h21[nno,2 :] ∪ h22, w32, b32), (6)

y = y1 ∪ y2, (7)

where w11, w21, b11, and b21 denote the weights and biases of
the first sub-model, while w12, w22, b12, and b22 are those for
the second sub-model. Eqs. (1) to (3) apply to the sub-model
1, and the (4) to (6) are for the sub-model 2. The number of
non-overlapping units in the first and second hidden layers are
denoted by nno,1 and nno,2, respectively. Let ro denote the ratio
of the overlapping units in each hidden layer (0 ≤ ro ≤ 1), and
nh,i denotes the number of hidden units in layer i. Then, the
number of non-overlapping units nno,i in the hidden layer i of
the first sub-model can be calculated as:

nno,i =

⌈
nh,i(1 − ro)

2

⌉
. (8)

We implement the joint traffic classification model in the P4
framework [4]. Since the P4 language does not support non-
linear operations, the linear ReLU function is selected as the
activation function for the hidden layers. The sigmoid function
(σ) is used to compute the outputsy1 andy2 of the first and second
sub-models. The output units (y) are a concatenation of y1 and
y2, which are the outputs of sub-models 1 and 2, respectively.

The joint traffic classification model is trained over
two or more switches in a sequential manner. With two
switches, the sub-model 1 is trained first at the primary switch to
find the optimal parameters w11, w21, b11, and b21 by minimizing
the mean squared error (MSE)-based loss functionL1. We define
N as the number of training samples, while y(j)1 and ŷ

(j)
1 are the

true and the predicted outputs of sub-model 1, respectively. The
loss function L1 is computed as:

L1 =
1
N

N∑
j=1

(y
(j)
1 − ŷ

(j)
1 )2. (9)

Then, the parameters of the sub-model 2, includingw12, w22, b12,
and b22 are trained at the secondary switch. We use the MSE-
based cost function given the pre-trained parameters of the first
sub-model. The loss functionL2 of the sub-model 2 is calculated
as below.

L2 =
1
N

N∑
j=1

(y
(j)
2 − ŷ

(j)
2 )2, (10)

where y
(j)
2 and ŷ

(j)
2 are the true and the predicted outputs of

sub-model 2.
For inference, the primary switch first extracts the features

of an incoming packet and sends them to the input layer of the
sub-model 1. Then, the sub-model 1 calculates the probability
of m1 major traffic labels, as shown in Fig. 3. If the maximum
probability of ŷ1 exceeds a threshold value λ (e.g., λ = 0.5), it is
highly likely that the incoming traffic belongs to one ofm1 major
classes. Therefore, the label of the packet can be predicted using
only the sub-model 1. Otherwise, if the major class prediction
turns out to be not so definitive, i.e., max(ŷ1) < λ, there may
not be strong evidence with which to deduce the traffic label
from the perspective of the primary switch. Then, the secondary
switch becomes engaged to execute the sub-model 2 to obtain
ŷ2. Combined with the output of the first sub-model ŷ1, the
packet is finally classified into label l = argmax ŷ. A flowchart
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Fig. 3. The inference phase of the proposed model. When major attacks are
injected to the network, only the sub-model 1 is executed at the primary switch,
whereas the additional sub-model 2 becomes involved for a further examination
of minor attacks at the secondary switch.

Fig. 4. Flowchart of JointNIDS. In the case of correct prediction, dominant
and minority attacks are detected at the primary and the secondary switches,
respectively.

of the proposed architecture is shown in Fig. 4. When a packet
arrives at the primary switch, the output ŷ1 from sub-model 1
is computed. If the packet is predicted to be part of a the major
attack, the traffic classification procedure is ended. Otherwise,
the incoming packet is transmitted to the secondary device, the
sequential sub-model 2 is executed, and its traffic class is further
examined.

IV. MAXIMIZATION OF TRAFFIC MANAGEMENT

In the IoT environment, in which resource-constrained de-
vices mostly perform minimally effective jobs, it is important for
the on-device network intrusion detection function to be resilient
and flexible at the architecture level. Also, the detection func-
tion needs to reduce the detection demands from the possible
intermittent traffic surge.

TABLE II
LIST OF MAIN NOTATIONS IN ILP FORMULATION

To more actively respond to the traffic dynamics and increase
the traffic detection capability, we take an optimization approach
by formulating the joint classification problem as an integer
linear program (ILP). The main objective is to maximize the
number of packets that can be inspected under the constraints
of classification accuracy, communication cost, and computing
resources. Table II presents the main symbols used in the ILP
formulation.

The system consists of a set of S switches denoted by
S = {1, 2, . . ., S}, in which switch i receives Ni packets per
second from an IoT network. Then, the total number of generated
packets per second is N =

∑S
i=1 Ni. It is assumed that there

are C available classification models, which are divided into
two sets: C1 and C2 are the sets of models to be executed with
one switch and two switches in series, respectively. Let Tj1 and
Tj2 denote the average execution time for classifying a single
packet using model j on the primary and secondary switches,
respectively. The average execution time is measured on the
P4-supported switches in the data plane. If model j belongs
to C1, traffic classification is executed on the primary switch,
without the involvement of the secondary switch (Tj2 = 0).

We define nij1 and nij2 as the assignment variables of the
number of packets classified by the primary switch with model
i and the secondary switch with model j. Note that nij2 = 0 for
j ∈ C1, since the models in C1 are executed only at the primary
switch. In terms of classification time, the average classification
time for switch i to finish classifying all the assigned packets
should be

∑C
j=1(Tj1nij1 + Tj2nij2). The execution time at

switch i for traffic classification should not exceed the maximum
classification time, tc,i. For example, tc,i = 1 is the allowed
deadline of 1 s, in the case that there is no other tasks required
by the switches. We empirically measure the classification time
for various models as Tj1 and Tj2. Then, the maximum limits of
the assignment variables βij1 and βij2 can be derived as below:

βij1 =
1

Tij1
, (11)
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βij2 =
1

Tij2
. (12)

In order to reduce the communication cost, each switch is
encouraged to classify as many as possible its incoming packets.
Since the number of the incoming packets can be different from
the number of packets that can be processed at the switch itself,
we introduce a constraint, γi, such that the difference should
be less than γi, i.e.,

∑C
j=1 nij1 −Ni ≤ γi, ∀i. In the ideal case,

γi = 0 means switch i is able to classify all the incoming packets,
without offloading some of them to the neighboring switches and
without paying communication costs for traffic classification.

The ILP can be formulated as follows:

max
S∑

i=1

C∑
j=1

nij1, (13)

subject to

1
n

S∑
i=1

C∑
j=1

Ajnij1 ≥ areq, (14)

S∑
i=1

C∑
j=1

nij1 = n, (15)

C∑
j=1

(Tj1nij1 + Tj2nij2) ≤ tc,i, ∀i ∈ S, (16)

tc,i ≤ 1, ∀i ∈ S, (17)

S∑
i=1

nij1 =

S∑
i=1

nij2, ∀j ∈ C2, (18)

C∑
j=1

nij1 −Ni ≤ γi, ∀i ∈ S, (19)

βij2 = 0, ∀j ∈ C1, (20)

0 ≤ nij1 ≤ βij1, ∀i ∈ S, ∀j ∈ C, (21)

0 ≤ nij2 ≤ βij2, ∀i ∈ S, ∀j ∈ C. (22)

The objective function in (13) maximizes the total number
of packets classified by all of the participating switches in the
network. The constraints in (14) and (15) make sure that the aver-
age classification accuracy over all switches and models should
achieve at least the requirement value, areq . The constraints in
(16) and (17) restrict the execution time for traffic classification
at each switch to be less than the maximum value, tc,i. (18)
ensures that the traffic classification models in C2 are executed
over two switches. Then, the communication overhead should
not go beyond a given constraint in case that a switch sends
the packet features to the other switches for classification, as in
(19). The remaining constraints in (20), (21), and (22) present
the range of the assignment integer variables nij1 and nij2.

If there is one classification model, C = 1, that belongs to
(C1), the ILP formulation is similar to the bounded knapsack
problem [25], which is an NP-hard problem. Switches are
considered as bags with limited capacity, while the packets

Fig. 5. NIDS with feature extractor and traffic classifier at a P4-supported
switch. The input features of JointNIDS derived from packet headers are fed
into the traffic classifier to compute the probability of attack types.

are the items to be assigned to switches. There are multiple
classification models, and a suitable model needs to be selected
for a packet to be classified with a single switch. The formulated
combinatorial optimization problem turns out to be NP-hard,
which is actually more difficult than the knapsack problem.
Although the optimal solution cannot be found in the polynomial
time, there are several heuristic algorithms [18] that can be used
to approximate the solution for our optimization problem case.
As a proof-of-concept prototype, a simple greedy algorithm is
applied to solve the optimization problem. For each incoming
packet, a group of switches select a classification model with the
lowest detection time so that both accuracy and time constraints
can be satisfied. The assignment is completed when at least one
constraint is violated, or all packets are assigned.

V. EXPERIMENTAL RESULTS

A. Implementation of NIDS in the Data Plane

To validate our approach, we implemented the joint classifi-
cation architecture, JointNIDS in the P4 framework. The main
elements of P4-supported switch architecture, including parser,
ingress control, outgress control, and deparser, are shown in
Fig. 5. In the ingress and outgress blocks, there is a set of
Match Action stages in which data packets are matched against
a table that consists of some entries to execute the appropri-
ate action. The intrusion detection system implemented at the
ingress control block consists of two parts: feature extraction and
traffic classification. For the first part, stateful objects, or more
precisely programmable registers, are used to store and update
packet features. These registers are initialized to 0. Whenever
a packet arrives at a switch, necessary information such as
source/destination IP address, packet length, and arrival time are
extracted from the packet header by the parser. Due to the limited
computing resources available in the data plane, we selected a
set of six features from [20] as the input of the classification
model. The previous features taken from the registers are used to
compute the current packet’s features. Then, the current features
are written to registers at the index specified by the packet
information. It is assumed that 32 bits are used to store features
using signed integer numbers. To make sure all features have
a similar value range, feature normalization is considered by
applying the bit shift operation in the P4 programming language.
The bit shift operation can be used instead of the integer division
operation, which is not supported by P4.
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TABLE III
DATA DISTRIBUTION OF THE IOT NETWORK INTRUSION DATASET

The normalized features are injected into the classifier to
predict the most likely traffic label. In the joint traffic classi-
fication model, the outputs of sub-model 1 are computed first
at the primary switch. If there is an output value greater than
a threshold value, the label can be inferred. Otherwise, the
overlapping hidden values and the outputs of the first sub-model
are transmitted to the secondary switch. We define a custom
header called NIDS that includes the overlapping hidden and
output values of sub-model 1. A custom header is added to the
packet at the deparser block of the architecture, as shown in
Fig. 5. At the secondary switch, the NIDS header is extracted,
and then the outputs of sub-model 2 are computed, to predict the
traffic label using the outputs of both sub-models.

B. Network Setup

To evaluate the feasibility of joint classification models, we
conduct experiments on P4 switches using the network emulator
Mininet [17]. There are two hosts, sender and receiver, con-
nected via two serial switches, primary and secondary, that are
embedded with the traffic classification function. Data packets
generated at the sender follow traffic provided by an IoT network
intrusion dataset [15]. There are nearly 3 million packets classi-
fied into normal data and one of four network attacks: reconnais-
sance, man-in-the-middle, denial of service, or botnet as shown
in Table III. The top-k traffic types belong to the majority group
(where k = 3 in our experiments), or the attacks accounting
for more than 90% of network threats are called major. For
our evaluation, the majority class includes normal, man-in-the-
middle, and botnet. The network parameters are trained using
80% of the data from the dataset, while the remaining data are
used for performance evaluation. The experiments are conducted
in a desktop PC with an Intel Core i7 2.5 GHz CPU with the
Radeon R9 M370X 2048 MB and Intel Iris Pro 1536 MB GPU
support, and 16 GB RAM, which is comparable to a normal or
low-end switch specifications. Two metrics are used to evaluate
the classification models, classification accuracy and end-to-end
delay from the sender to the receiver.

C. Joint Classification

We first validate the training process of our joint classification
model by measuring the loss function as shown in Fig. 6. He
initialization [12] is used to initialize network parameters. We
use a network with 6 input, 10 hidden, and 5 output units. The
batch size is set to 2,048, with eight different learning rates
from 0.001 to 0.08 for evaluation. There are two separate steps:
in step 1, only the parameters of sub-model 1 are learned, and

Fig. 6. Loss function with respect to the number of epochs. The parameters
of sub-model 1 and 2 are trained by the primary and secondary switches,
respectively. The loss value decreases as training continues with epochs.

Fig. 7. Comparison of the accuracy of floating-point and integer parameters.
JointNIDS has a similar performance to that of FC models, and higher accuracy
than NB, SVM, and DT.

in step 2, the parameters of sub-model 2 are trained on top of
the already-trained and fixed parameters of sub-model 1. The
training process at each step stops when there is no further
improvement on the validation set for the latest 20 epochs. As
shown in Fig. 6, sub-models 1 and 2 took 187 and 253 epochs,
respectively, until convergence.

Then, we investigate the classification accuracy of different
traffic classification models: support vector machines (SVM),
decision trees (DT) [22], and Naive-Bayes (NB) [23], as shown
in Fig. 7. The experiments are conducted using a specific pro-
gramming language P4, which was designed for programmable
switches. To indicate a fully connected (FC) model that is exe-
cuted with only one switch, the symbol 1 s is used. Meanwhile,
the symbol 2 s is used for the two switch usage in the joint clas-
sification architecture involving with the primary and secondary
switches. As the number of hidden layers varies from 0 to 2, the
symbols 0 h, 1 h, and 2 h indicate zero, one, and two hidden
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Fig. 8. Comparison of the complexity of the JointNIDS and FC models.
JointNIDS reduces model complexity compared to FC architectures, especially
with more imbalanced attack type data.

Fig. 9. Impacts of the number of hidden layers in JointNIDS. As the number
of hidden layers varies from 0 to 4 with the two switch scenario, the accuracy
increases, while its resulting computational complexity linearly increases.

layers, respectively. To embed the classification models in the
P4-supported switches that do not support floating-point param-
eters, we round the floating-point parameters learned from the
training process to integer values using 10 bits for the fractional
numbers. Fig. 7 shows a comparison of the performances of the
models using floating-point and integer parameters. Generally,
using integer parameters results in slightly lower accuracy than
the use of intact floating-point parameters. Our joint classifica-
tion architecture on the P4-supported switches therefore does
not lose fidelity due to integer quantization, compared to the
original floating-point parameter-based model on more powerful
devices. Table IV compares other performance metrics of the
classification models.

The models over two switches (2s0h, 2s1h, and 2s2h) tend to
achieve similar performance to the models on only one switch
(1s0h, 1s1h, and 1s2h). In our joint classification approach, each
of two devices are in charge of only its own partial classification
model in a distributed sequential manner. Accordingly, it can

TABLE IV
COMPARISON OF CLASSIFICATION MODEL PERFORMANCE

reach its ideal upper bound based on the complete classification
model running on a single device. JointNIDS allows the training
of a classification model over two edge devices by reducing the
computational burden, while maintaining similar classification
accuracy. For example, the models of 1s2h and 2s2h produce
94.54% and 93.80% accuracy, respectively, on the test set on
the P4-supported switch; a difference of only 0.74%. On the
other hand, the NB-based model has the lowest accuracy of
45.7%. This result is because the NB-based model uses only
the source and destination IP addresses as flow signatures for
detecting the attack class, even though a single host can generate
multiple different attacks. Hence, the classification performance
of the NB-based model is lower than the others. Our joint traffic
classification models produced better performance than SVM or
DT, due to the non-linear mapping from the input features to the
output values.

We now examine the performance of JointNIDS including
classification accuracy and model complexity with the number of
hidden layers changes from 0 to 4. The number of floating-point
operations (FLOPs) of both sub-models 1 and 2 is used to
represent model complexity of JointNIDS. As shown in Fig. 9 ,
the classification accuracy improves as a larger number of hidden
layers was used. However, there is a trade-off between clas-
sification performance and model complexity. Since our work
aims to implement a lightweight detection model on resource-
constrained devices, a relatively small neural network is used.
Therefore, an NN-based classification model with one hidden
layer is used as the default architecture for our experiments.

To show the low complexity of JointNIDS, we compare the
number of arithmetic operations – multiplication and addition –
of the proposed framework and single switch-based FC models
with various ratios of the major attack classes (Fig. 8). We
investigate the relative performance of JointNIDS by the FC
model according to complexity by varying the number of hidden
layers from 0 to 2. In the case of non-hidden layers, the operation
ratio between 2s0h and 1s0h is computed, and for one and two
hidden layers, the corresponding ratios are similarly computed.
When the percentage of major attack classes increases from
0.1 to 0.95, JointNIDS becomes more beneficial in terms of
model complexity. For the considered dataset, the majority of
attacks contains 97% of samples. If one hidden layer is used,
the complexity ratio between the JointNIDS and FC models is
0.663, meaning that JointNIDS reduces the operations by 33.7%,
compared to the FC model of 1s1h.
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TABLE V
EFFECTS OF OVERLAPPING RATIO ON THE PERFORMANCE OF THE JOINT

CLASSIFICATION MODEL

We now investigate the effects of the overlapping ratio on the
number of network parameters, classification accuracy, and E2E
delay of the classification model (Table V). Model 2s1h is used
as the default architecture of the joint classification model. As
the overlapping ratio changes from 0 to 0.8, the classification
architecture becomes more complex with a higher number of
parameters, thus resulting in gradually higher accuracy. When
the overlapping ratio is 0.8, the classification accuracy almost
reaches the upper bound performance, which is 94.54% in the
case of 1h2h. If the overlapping ratio is set to 1, it is equivalent
to the fully-connected model 1s1h. In terms of E2E delay, due
to the increasing trend in model complexity, we have higher
latency for a packet to be classified on the way from the sender
to a receiver host. In Table V, we observe a balance between
classification accuracy and E2E delay with an overlapping ratio
of 0.6, as being used as the default ratio in the model.

We also examine the effect of the number of hidden layers in
JointNIDS in Fig. 9. As the number of hidden layers varies from 0
to 4 with the two switch scenario, the accuracy increases, while
its resulting computational complexity linearly increases. We
find a good trade-off point where the number of hidden layers
is 1, showing a stable accuracy performance with a relatively
decent computational overhead.

We have conducted experiments to verify the impact of λ

value on the classification accuracy of the proposed model and
the percentage of use of switch 1. The results are shown in
Fig. 10, in which λ varies from 0.01 to 0.99. As λ increases, the
classification accuracy of the decomposed model can be en-
hanced, because the outputs of both switches are used more
frequently. The model complexity can be reduced by using only
switch 1. As in Fig. 10, we have observed that the classification
accuracy becomes stable, while the amount of data traffic classi-
fied by using only switch 1 decreases greatly when λ exceeds 0.7.
For other experiments, λ = 0.5 is selected as a good trade-off
point to guarantee the classification accuracy while maintaining
low model complexity.

We measure the average delay at each switch and also the E2E
delay from the sender to the receiver for various classification
models as in Table VI. The delay includes the time for pars-
ing, match-action, deparsing, and classification execution. Since
SVM, DT, 1s0h, and 1s1h do not require the secondary switch
for classification, only the generic parsing, match-action, and
deparsing time is measured. The classification-related execution
time is highlighted in bold text. For the same number of hidden
layers, the joint classification model produces a lower E2E delay

Fig. 10. Impact of threshold value λ on the performance of the proposed
model. There is a trade-off between accuracy and computational complexity for
predicting attack traffic classes.

TABLE VI
COMPARISON OF AVERAGE DELAY AMONG CLASSIFICATION MODELS

than its fully-connected complete model executed at a single
switch. For example, model 2s1h reduces the E2E delay by
0.185 ms, compared to the model 1s1h. Other machine learning
approaches, such as SVM and DT [22], have a slightly lower
E2E delay, but with a relatively lower classification result, as
shown in Fig. 7.

D. Optimization of Traffic Management

To evaluate the effectiveness of our optimization scheme for
maximizing traffic management, we use the empirical perfor-
mance statistics in classification accuracy and delay, as reported
in Section V-C. In an IoT network of five P4-supported switches
with the traffic classification function, the number of packets
originally sent to each switch is randomly selected in the range
[100, 2,500], with one packet of 1,000 bytes. To evaluate the
performance, the number of classified packets and the comple-
tion ratio of the total number of the classified packets out of the
total number of the generated packets are quantified. Since the
raw dataset is highly unbalanced, we have chosen a subset of
the dataset, so that each attack class is distributed more evenly.
Four out of 42 trace files are selected with 25,747, 4,980, 1,630,
5,000, and 1,244 samples in the normal, DoS, MitM, botnet,
and reconnaissance classes, respectively. Then, the generated
packets are classified by one out of six models: SVM, DT,
1s0h, 1s1h, 2s0h, or 2s1h on the selected subset, leading to the
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Fig. 11. Effects of joint classification models with different numbers of gen-
erated packets. Embedding our joint classification approach in NIDS improves
the inspection throughput.

classification accuracy of 58.67%, 69.45%, 68.04%, 78.16%,
68.04%, and 80.14%, respectively.

Given the empirical performance metrics of accuracy and E2E
delay, the optimal solution to the ILP problem is obtained by
using a Python-based library called pywraplp with the SCIP
(Solving Constraint Integer Programs) solver [1]. SCIP with
a branch-and-bound approach divides the problem into sub-
problems, usually splitting the variable space into two disjoint
parts. The subproblem splitting ends when the subproblem is
infeasible, or when an optimal solution or no better solution for
the subproblem is found.

We run the optimization of traffic management 20 times,
generating random packets at each switch for the following com-
parison: without versus with our joint classification scheme as in
Fig. 11. The joint classification-free models are listed as SVM,
DT, 1s0h, and 1s1h. As the number of generated packets varies
from 3,741 to 9,435, the number of classified packets with joint
classification is higher than that of the one without joint classifi-
cation. This means that the joint classification approach enables
the general classification models to accept more incoming traffic,
up to 21%, by effectively distributing traffic processing demands
to another switch. Due to the limited computational resources
at the switches, models with and without joint classification do
not fully process the given incoming packets. The number of
classified packets can not exceed 6,100 packets. Although there
should be a limit in processing the simultaneously incoming
packets at the edge, the joint classification-driven models im-
prove the processing capability almost up to the performance
limit.

We further investigate the traffic processing capability with
various accuracy requirements by quantifying the completion
ratio, depending on whether the joint classification is included
or not, as shown in Fig. 12. As the first requirement, the
requirement for a system to achieve a certain level of detection
accuracy varies, for example, from 60% to 78%. The maximum
number of packets offloaded to a different switch is denoted as
γ and used as the second requirement.

Fig. 12. Effect of different requirement constraints with and without joint clas-
sification. More traffic packets have been inspected with the help of JointNIDS.

Fig. 13. Effect of joint classification models with different average data rates.
Given a constrained network bandwidth, joint classification effectively inspects
more traffic.

We quantify the completion ratio and the end accuracy with
respect to the accuracy requirement, while the maximum number
of offloading packets γ is set to 0, as in Fig. 12(a). Packets
randomly generated 10 times are injected at each switch, and
the average performance is measured. As the system enforces
the accuracy requirement from 60% to 78%, the completion
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ratio with joint classification outperforms the ratio without it,
while both schemes satisfy with the accuracy requirement. For a
given higher accuracy requirement, the joint classification-based
optimization strategy has successfully processed even more
traffic, with a performance gap of up to 8.3%.

This result is due to the fact that when the accuracy re-
quirement is relatively low, both strategies use models with
low classification performance to maximize the amount of data
that can be managed. Thus, the difference in completion ratios
between the two strategies is not significant. However, when
the accuracy requirement is high, the models with high per-
formance such as 1s1h, and 2s1h must be incorporated. Since
the joint classification-based models require a lower delay for
traffic classification – more packets can be processed for a
given time – the use of joint classification models is more
beneficial. For example, if the accuracy requirement is set to
78%, the completion ratios with and without joint classification
models are 0.776 and 0.693, respectively. Fig. 12(b) shows the
performance of both strategies with the different numbers of
packets offloaded to switch i, given the accuracy requirement is
set to 78. It is assumed that ∀i γi = γ, where γ varies in the
range [0, 600]. Intuitively, when γ becomes larger, switches can
distribute the classification demand and exchange more packets.
This approach makes more efficient use of computing resources
in the whole network, and thus, the completion ratio in both cases
increases. The performance gap in both strategies is reduced if
γ increases, because more packets can be classified, even by
joint-less classification models by the neighboring switches. For
example, the gap between the two strategies is 0.075 and 0.01
when γ changes from 0 to 600.

Finally, we investigate the way in which the data rate affects
the completion ratio in both traffic management strategies with
respect to the average data rate at each switch, from 1 to
100 Mb/s. The accuracy requirement and γ are set to 78% and
0, respectively. If the average traffic rate at each switch is less
than 5 Mb/s, both strategies are able to classify almost every
generated packet. When there are more incoming data from
each switch, the completion ratio in both cases gradually drops.
Because there is insufficient computing resource to classify
all of the incoming packets. Thanks to our joint classification
approach, a strategy has helped to handle more traffic than
joint inspection-free learning in a given same IoT network. This
means that the approach contributes to ensuring more security
and reliability for the network.

VI. DISCUSSION

A. Effect of Environmental Constraints

The joint classification approach operates more effectively in
a relatively heavy traffic environment. Heavy traffic conditions
often arise from intensive packet injection into several switches,
or network bandwidth shortage. A sequential packet inspection
architecture operates collaboratively along a series of sequential
switches. It allows selective turning of each switch to be active
or inactive, for efficient usage of numerous IoT switches. By
defining a unique inspection role for different attack types for
each dedicated switch, the entire network finds a way to improve

packet inspection throughput under the heavy traffic conditions.
As the network traffic dynamics change, the adaptive adoption
of joint classification and traffic management optimization in
the data plane can contribute to defense against potential threats
from arbitrary hacking attempts.

B. Extension to Joint Switch Group

A distributed packet inspection architecture with sequentially
connected network switches offers performance improvement.
To decide upon the effective number of joint switches, we may
need to consider the following aspects of transmission delay
between switches and the computation delay at each switch.
Since transmission delay is not negligible in a complicated
network topology with a relatively large number of network
hops, the benefit of selective computation with collaboration
could be compromised with the network overhead. In an envi-
ronment with a specific application type, network bandwidth,
and computing resource specification, there exists an effective
operating point, suggesting the effective number of sequential
switches for the purpose.

VII. CONCLUSION

With the aim of developing an on-device network intru-
sion detection system with low complexity for programmable
edge devices, we propose a joint classification architecture
JointNIDS. This architecture consists of a series of partially
overlapping sub-models that are distributed sequentially over
a primary switch and multiple secondary switches. The primary
switch mainly detects major traffic classes, while the secondary
switch takes over if necessary. JointNIDS architecture uses some
shared overlapping sub-neural networks, to handle the remaining
minor traffic classes. JointNIDS eventually reduces NIDS model
complexity as well as detection time.

Our experimental results on the data plane in the P4 frame-
work illustrate the effectiveness of JointNIDS, which produced
lower detection delay without much sacrifice of classification
accuracy, compared to counterpart algorithms. To demonstrate
another benefit of JointNIDS, we propose an optimization algo-
rithm for efficient traffic management. It maximizes the traffic
management by all of the available switches, for given perfor-
mance constraints of resource and communication overhead.
The evaluation of the performance of various scenarios demon-
strates that a collaborative architecture based on joint classifica-
tion enables us to produce a better traffic management strategy,
with the low transmission cost and high accuracy requirement.

JointNIDS allows the customization of the inspection of target
attack types in NIDS. If a network operator wants to focus
on detecting some specific network attacks with a given de-
lay constraint, the primary switch can perform the meticulous
inspection of these attack types. In future work, it would be inter-
esting to design a heuristic packet assignment algorithm that can
quickly find an optimal assignment for the system, particularly
in a larger network. More extensive real-world evaluation of
JointNIDS could also be conducted. Also, JointNIDS can be
combined with model compression techniques such as neuron
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pruning and distillation, to construct an even more lightweight
yet efficient detection system.
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