11192

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 67, NO. 11, NOVEMBER 2018

DroneNetX: Network Reconstruction Through
Connectivity Probing and Relay Deployment
by Multiple UAVs in Ad Hoc Networks

So-Yeon Park, Christina Suyong Shin, Member, IEEE, Dahee Jeong, and HyungJune Lee

Abstract—In this paper, we consider a network reconstruction
problem using unmanned aerial vehicles (UAVs) where station-
ary ad hoc networks are severely damaged in a post-disaster sce-
nario. The main objective of this paper is to repair the network by
supplementing aerial wireless links into the isolated ground net-
work using UAVs. Our scheme performs network probing from
the air and finds out crucial spots where both local and global
routing performance can significantly be recovered if deployed.
First, we propose a novel distributed coverage path planning algo-
rithms with independent and computationally lightweight naviga-
tion based on adaptive zigzag patterns. Second, we present route
topology discovery schemes that capture both local and non-local
network connectivity by extracting inherent route skeletons via
stitching partial local paths obtained from the simple packet prob-
ing by UAVs. Finally, we find the optimal UAV relay deployment
positions that can improve network-wide data delivery most effec-
tively based on three novel approaches of an optimization tech-
nique, an iterative heuristic algorithm, and a topology partitioning
of strongly connected component. Simulation results demonstrate
that our distributed traversing algorithms reduce the complete
coverage time, the travel distance, and the duplicate coverage com-
pared to other counterpart algorithms. Our deployment algorithms
recover severely impaired routes, incurring reasonable computa-
tional overhead.

Index Terms—Network reconstruction, route topology discov-
ery, coverage path planning, network hole detection, relay deploy-
ment, self-organizing networks, unmanned aerial vehicles (UAVs).

I. INTRODUCTION

NMANNED Aerial Vehicles (UAVs) have been consid-
U ered as an emerging disruptive technology to facilitate
dynamic in-situ operations such as sensing real-time terrestrial
events from the air and unmanned package delivery. These UAVs
can form their own aerial networks, while also communicating
with terrestrial networks [1], [2]. The recent network has been
evolving into forming a two-tier network of aerial and terrestrial

Manuscript received March 9, 2018; revised July 9, 2018; accepted Au-
gust 25, 2018. Date of publication September 14, 2018; date of current ver-
sion November 12, 2018. This work was supported in part by the National
Research Foundation of Korea Grant funded by the Ministry of Education
(NRF-2015R1D1A1A01057902) and in part by the Ministry of Science and
ICT (NRF-2018R1A2B6004006). The review of this paper was coordinated by
Prof. C. Assi. (Corresponding author: HyungJune Lee.)

The authors are with the Department of Computer Science and Engi-
neering, Ewha Womans University, Seoul 03760, South Korea (e-mail: ps.
sally25 @gmail.com; suyongshin92@gmail.com; wjdekgml0703 @naver.com;
hyungjune.lee @ewha.ac.kr).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVT.2018.2870397

. Member, IEEE

ad-hoc networks as a promising self-organizing network thanks
to the on-the-fly characteristic of UAVs.

In disaster situations, the terrestrial network can be broken
into several isolated sub-networks. The network can be even
more critically affected if some crucial relay nodes in the middle
of networks become lost or in failure. In this situation, main-
taining a reliable communication network through fast network
repair is important for effectively sharing in-situ emergency in-
formation between victims and first responders.

There have been efforts on utilizing autonomous unmanned
terrestrial or aerial vehicles on a Region of Interest (Rol) [3].
These mobile vehicles can be used as effective communication
resources to quickly reconnect isolated networks each other
through their ad-hoc deployment. Employing UAVs can be a
rescue to address the network hole problem by being deployed
as temporary relay nodes [4], [S].

An advantage of UAVs compared to terrestrial vehicles
is its physically less constrained movement for informa-
tion gathering. The UAVs can retrieve data from the ground
via the ground-to-air communication, relay them to other UAVs
in the air-to-air communication, and send back to the ground
via the air-to-ground communication. They can gather network
collapse status with connectivity probing from the air, and also
be deployed as communication relays if necessary.

We consider two major roles of UAVs as exploring network
connection status over unknown Rol areas, and being deployed
as ground-to-air and air-to-ground relays for autonomous net-
work reconstruction. The challenges are 1) to design a dis-
tributed motion planning algorithm for sparse yet efficient con-
nectivity probing over the damaged network, and 2) to locate
network holes where the deployment of UAV relays helps to
repair the damaged network.

There have been previous works to address the problem of
multi-agent exploration in [6]—-[8] mostly from robotics com-
munity. In [7], [8], researchers propose simple distributed Ants
algorithms simulating a colony exploration of ants while leaving
pheromone traces during the environment traversing. Although
[6], [9] present the Brick&Mortar algorithm and its variation
that reduce duplicate coverage as opposed to the Ants, they
suffer from computationally intensive loop closure problems.
Some other works [10], [11] have extensively investigated the
problem of path planning and space exploration. Although most
of them aim to mitigate duplicate coverage among agents, they
can not directly be applied to the UAV context because there
is less consideration of networking capability and lightweight
computation.

0018-9545 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-4655-4298
mailto:ps.sally25@gmail.com
mailto:ps.sally25@gmail.com
mailto:suyongshin92@gmail.com
mailto:wjdekgml0703@naver.com
mailto:hyungjune.lee@ewha.ac.kr

PARK et al.: DRONENETX: NETWORK RECONSTRUCTION THROUGH CONNECTIVITY PROBING AND RELAY DEPLOYMENT

The problem of network hole detection and deployment has
been studied in [12]-[16] from network community. [12], [14],
[15] explore sensor deployment algorithms by finding network
holes in from more theoretical perspectives. Regarding the us-
age of aerial vehicles, aerial communication based on 802.11n
performs poorly due to aerial link vulnerability [13], while some
antenna extension can enhance the quality of aerial links [16].
Some researchers utilize UAVs to re-establish network connec-
tivity with aerial deployment in [17], [18]. However, network
repair improvement with respect to network probing density and
the optimal UAV deployment problem based on sparse connec-
tivity information have not been investigated well.

In this paper, we aim to answer two key questions of 1) how
to traverse a network efficiently for finding the terrestrial net-
work connection status with multiple UAVs in a distributed way
without much duplicate coverage and 2) what the optimal UAV
deployment algorithm based on tangible connectivity measure-
ments should be to achieve a practical recovery.

We propose several novel distributed path planning al-
gorithms based on independent and computationally light
decisions among several pre-determined zigzag patterns. These
patterns extend the local coverage as the UAVs are flying
forward, while reducing duplicate coverage with other UAVs.
Exploring the Rol area, the UAVs periodically probe network
connectivity from the air toward stationary networks.

We develop connectivity probing algorithms for UAVs to cap-
ture both local and non-local network connectivity from the air
to accomplish a more suitable UAV deployment in terms of route
reconstruction. Based on our newly designed cost-effective path
planning algorithms, UAV's drop off probing packets that gather
local network connection information within one hop, or keep
being relayed within several hops and retrieve them to parse
their distinctive partial non-local paths. We discover the under-
lying route topology by constructing the collected partial paths
via path stitching, where we borrow some general idea and term
from the wired network [19].

Once the network traversing procedure based on path
planning is completed, we find the optimal UAV relay positions
that can repair network-wide data delivery most effectively.
First, we aim to find the optimal deployment strategy based
on an optimization technique. We formulate the problem into
a binary integer program and obtain the optimal deployment
positions for UAVs. Second, we seek a computationally more
efficient iterative deployment strategy. By leveraging the
obtained topology information constructed by UAVs, we locate
and prioritize network holes by capturing a more global impact
on the overall routing structure. To understand the inherent
route skeletons, we perform connectivity-based clustering
of stationary nodes and UAV deployment candidate spots.
We iteratively find the most effective deployment locations,
leading to significant route improvement over the damaged
network. Third, we devise a further improved UAV deployment
algorithm by capturing more global route skeletons based
on the topology partitioning technique of strongly connected
component from an even higher-level perspective.

Our main contributions can be summarized as follows.

e We design several variants of distributed path planning

algorithm dedicated to UAVs that greatly reduces travel
time and distance, and duplicate coverage among UAVs.

11193

e We present both local and non-local route topology dis-
covery schemes to extract the inherent route skeletons
by stitching partial local paths obtained from simple path
probing by UAVs.

® We propose practical network hole replacement algorithms
that dispatch a limited number of UAVs to the selected
crucial spots, which can achieve both local and global
improvement of routing performance.

This paper proposes a network reconstruction framework,
called DroneNetX, which is a class of network traversing and
relay deployment algorithms using multiple UAVs. This work
extends our prior work of DroneNet [20] and DroneNet+ [21]
as follows.

e We present a further improved network traversing algo-
rithm that reduces the network traversing time down to
less than 11% by either adaptively incrementing or decre-
menting the traversal width of UAVs.

e We propose a new network hole replacement algorithm
that captures globally connected sub-network dynamics
based on the topology partitioning technique of strongly
connected component, improving network recovery per-
formance in terms of end-to-end routing cost and perfor-
mance stability.

e We add experimental results on how the traversal width
should be adjusted within a time windowing manner.

® We add experimental results to compare all the proposed
network traversing algorithms including the new further
improved algorithm in terms of navigation efficiency.

® We add experimental results to compare all the proposed
UAV deployment algorithms including our new algorithm
in terms of routing recovery performance.

® We add discussions on the relationship between the num-
ber of UAVs and the network collapse degree, the effects
of network traversing and deployment decision on overall
network recovery performance, the possibility of integrat-
ing both traversing and deployment into one stage and em-
ploying its progressive optimization, and several practical
issues for real-world applications.

The remainder of this paper is organized as follows. After
discussing related work in Sec. II, we introduce our problem
and system model in Sec. III. We present several algorithms
of network traversing consisting of route topology discovery
and motion planning in Sec. IV, and Sec. V describes our UAV
deployment algorithms. After presenting the evaluation results
of our proposed approaches in Sec. VI, we discuss several crucial
aspects in Sec. VII, and then finally conclude this paper in
Sec. VIIL.

II. RELATED WORK

Related work on the problem of network reconstruction using
UAVs is classified into two categories: area exploration of multi-
agents (or multi-robots) and network hole replacement.

A. Multi-Agent Area Exploration

The area exploration of multi-agents has extensively been
investigated in robotics research community with a long history.
This problem is also referred to as coverage path planning. To

11194

minimize the completion time for a certain area, an efficient
path or trajectory that can explore all the searching areas is
extracted. To achieve a practical yet efficient trajectory, the area
space is decomposed into multiple cells with approximate [22],
[23], semi-approximate [24], [25], and exact types [25], [26].
The cellular decomposition facilitates practical construction of
provable performance guarantee [27].

Some algorithms have been inspired by swarm intelligence
for cooperative foraging behaviors of ants or bees. [7], [8]
propose decentralized Ants algorithms simulating a colony ex-
ploration of ants while leaving pheromone traces during the
environment traversing. While these Ants-based algorithms are
not optimized enough in terms of reducing duplicate coverage,
[6], [9] present the Brick&Mortar algorithm and its variation to
tackle this problem. However, they suffer from somewhat com-
putationally intensive loop closure problems. Also, in this type
of algorithms, each agent shares its collected information by
tagging the environment, e.g., leaving some information (e.g.,
pheromone) into a certain area, for other agents to use it upon
visiting later, limiting applicability to the UAV context.

In the context of UAV usage, there have been some recent
studies that design the optimal path-planning using a UAV. A
recent work [28] aims to solve a traveling salesman problem
for environmental monitoring based on a genetic algorithm that
calculates fitness functions for maximizing the coverage. Fur-
thermore, many interesting research has been conducted for
deriving effective motion planning for multiple UAVs [24],
[29]-[31]. These works can be categorized into three dimen-
sional coverage path planning and task division among multiple
UAVs. To obtain coverage methods in 3-dimensional space,
some works [24], [31] apply a planar coverage algorithm based
on 2-dimension in successive horizontal planes. In [32], [33],
3-dimensional cellular decomposition has been conducted for
constructing the 3D coverage path of UAVs. Using multi-
ple UAVs, coverage can be explored in a cooperative fashion
through task division by maintaining explore states for multi-
robot coordination [29] or based on a decentralized gradient-
based probabilistic search with cooperative UAV's [30].

Although our work belongs to the cellular decomposition ap-
proach with the exact type using zigzag trajectory, we differenti-
ate our work from previous works in the following aspects. Our
work adaptively changes the UAV traversal pattern by reflecting
the ongoing traversal progress and the encountering events with
other UAVs for minimizing the duplicate coverage over the Rol.
Further, our scheme performs network topology construction in
a more active way via connectivity probing through network
probing packets as well as through UAVs’ direct visit over ter-
restrial ad-hoc nodes, concurrently with the above coverage path
planning.

B. Network Hole Replacement

The network hole replacement has been explored in ad-hoc
sensor networks research community [34], [35]. Lacking
wireless coverage in a certain target area, sensing capability
over the area or local communication among sensors become
undermined. This coverage hole problem can be addressed by
discovering the existence of coverage holes based on Voronoi
diagrams [36], by detecting virtual forces in the potential field
among nodes considered as virtual particles [37], by comparing

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 67, NO. 11, NOVEMBER 2018

local density with the ideal uniformly distributed density [38],
or by maintaining the line of sight communication relationships
among nodes [39]. Mobile sensors are dispatched or change
their deployment location to the detected coverage hole
location.

There have been several efforts to address the network hole
problem by utilizing UAVs as relay nodes [3], [17], [18],
[40]-[42]. UAVs are dispatched to some critically damaged
spots and are served as bridge nodes to connect a terrestrial
sub-network with another from the air. They aim to recover
the broken connectivity by utilizing UAVs based on Delaunay
triangulation [17] or a game theoretic approach [18].

The authors in [3] propose three phase deployment strategy:
initial deployment, connectivity measurement on the initially
deployed topology, and thereafter deployment position repair.
In [40], two types of network connectivity: global message con-
nectivity and worst-case connectivity are quantified, and both
connectivity quantification aims to be maximized based on the
concept of the minimal Steiner tree from graph theory. Simi-
larly in [41], the 3D locations of the UAVs are determined to
maximize the coverage lifetime using circle packing theory. In
the similar context, some research work [43] proposes a relay
node placement algorithm based on particle swarm optimization
that takes considerable computation complexity. The authors in
[42] solve the network coverage problem by finding out the
optimal deployment positions of UAVs via a fitness function
with three metrics of coverage, fault-tolerance, and redundancy,
based on a theoretical unit disk model under the known node
locations.

Our work presents network hole finding algorithms by un-
derstanding both local and non-local network topology in the
connectivity space so that it can repair broken packet routes
via UAV relays and recover routing performance in a local and
non-local manner.

III. SYSTEM MODEL

This work considers a network reconstruction problem using
UAVs where stationary ad-hoc networks are severely damaged
in a post-disaster scenario. Our goal is to repair network cov-
erage by supplementing aerial wireless links into the stationary
network to reconnect isolated ground networks each other with
a limited number of UAVs.

We assume that UAVs are equipped with the same wireless
radio as stationary nodes (e.g., 802.11 or 802.15.4). A UAV can
communicate with a part of stationary nodes on the ground or
other UAVs in the air as long as they are within radio range. It
is also assumed that UAVs are aware of Rol to explore and can
keep track of their relative position on Rol compared to their
corresponding physical position. Any UAV control issues on
moving from one location to another due to external environ-
mental factors such as weather, obstacles, and collisions with
other UAVs are out-of-scope in this paper. We consider UAVSs to
initially be fully charged and keep operating without recharging
during a complete mission of network reconstruction.

The problem of network construction using UAVs can be
divided into two sub-problems: 1) network connectivity probing
from the air based on distributed motion planning of UAVs for
the complete Rol coverage, while reducing duplicate coverage
(refer to Sec. IV), and 2) optimal UAV relay deployment for

PARK et al.: DRONENETX: NETWORK RECONSTRUCTION THROUGH CONNECTIVITY PROBING AND RELAY DEPLOYMENT

vertex

PHASE 1.
Network traversing
by distributed UAVs

1 Optimization

PHASE 2.
Coverage hole detection

Deployment of Multi-UAV Relays
for network recovery

@ : Stationary nodes : Coverage holes

Fig. 1. Overall procedure of network traversing, coverage hole detection, and
deployment by exploiting UAVs for autonomous network recovery.

the most effective network recovery given a limited number of
UAVSs (refer to Sec. V).

After all of UAVs finish network exploration over a given Re-
gion of Interest (Rol), they gather at a designated place to share
the collected network probing information. Based on the infor-
mation, their deployment location can be computed at a selected
UAV or a group of UAVs. Its deployment computation result is
shared with other UAVs, and they are accordingly dispatched at
each position as relays, as illustrated in Fig. 1.

IV. NETWORK TRAVERSING

When a catastrophic disaster occurs, a terrestrial network of
stationary ad-hoc nodes may be damaged severely. To maintain
reliable routes over stationary ad-hoc networks, it is important
to quickly navigate the damaged area for diagnosing network
connection status before additional relay nodes are deployed.

We propose network traversing algorithms consisting of dis-
tributed motion planning for multiple UAVs and concurrent net-
work probing by them. Multiple UAVs explore the network over
Rol according to their own independent navigation decision. For
an efficient distributed exploration on the Rol region, we define
a frontier map that consists of square grids with m x m ver-
texes as in Fig. 2(a). Each UAV initiates its navigation at its
currently visiting vertex or a designated vertex, continues its
movement decision to the next vertex, and stops if it covers all
of the vertexes on the Rol.

A. DroneNet: Network Traversing

Each UAV runs an independent motion planning based on one
of eight pre-defined zigzag patterns, e.g., North-East, North-
West, South-East, South-West, East-North, East-South, West-
North, and West-South with the orthogonal traversal width L. It
generates a future-vertex-visit-trajectory with the longest length
toward a certain direction up to the boundary of Rol among the
above eight pre-determined zigzag patterns as shown in Fig. 2(a).
Since a UAV is not aware of the total number of UAVs and the
location of other UAVs, it is initially supposed to traverse over
all the vertexes in Rol. Whenever a UAV visits a vertex at a
time, it adds the visited vertex ID to its vertex-visit-list and
updates its unvisited vertex list. If two or more UAVs are within
radio range, they share their own vertex-visit-list with others,
and merge them into its original vertex-visit-list and accordingly
update their own unvisited vertex list.

11195

Si 5

vy Uy / Vg b "1

Sy m

\ Vg Vo Vaql

NW | NE

%\E
=

41L

SW. SE }

N o e 64 [U7s Yhe Vel

Ly

Vg V) V. Vag _Vba Vi)

(a) Logical grid coordinate consisting of vertexes,
also showing eight pre-determined zigzag patterns
for motion planning

Usy | -

NN ‘THT

<Jeee
:
us

Vg1 Vg1 (
|
1

Vo1 Vo2 Vo3 Vog Vos Vo1 Voz Vo3 Vo4 Vos

(b) Case 1: The East vertex toward (c) Case 2: Both North and East
the first quadrant with the longest vertexes toward the first quadrant
length up to Rol is taken. Then, the with the longest length up to Rol are
pattern including the North vertex is taken. Then, it finds a next longest
chosen. pattern on another quadrant.

Fig. 2. Logical grid coordinate, zigzag movement trajectories, and future
vertex visit decision rules in DroneNet.

When a UAV decides its next visiting vertex based on the
future-vertex-visit-trajectory, it checks whether the anticipating
visiting vertex has already been taken by other UAVs by search-
ing it over the vertex-visit-list. In case that the anticipating ver-
tex is already taken, the UAV lists up all available neighboring
vertexes to move among (North, East, South, West), except the
direction with the taken vertex, and randomly chooses one direc-
tion for next move. In this way, a UAV is able to avoid duplicate
exploration over the vertexes already visited by other UAVs in
a distributed manner. It continues to generate a future-vertex-
visit-trajectory with the longest length toward the boundary of
Rol and execute its local visit decision afterwards as illustrated
in Figs. 2(b) and 2(c).

During each vertex visit, a UAV probes network connectivity
with neighboring stationary nodes near the vertex. The UAV
broadcasts hello packets with a periodic manner, and any
neighboring stationary nodes that have received a hello packet
replies back to the UAV with a response packet embedding
its own node ID. Based on the collected response packets
from connectable nodes for multiple hello packets, the UAV
calculates the average Packet Reception Rate (PRR) for each
responded node ID at the vertex position. As each UAV tra-
verses over the network on the Rol, it continuously updates its
PRR table for the attributes of visited vertex ID and stationary
node ID and also exchanges its PRR table together with the
vertex-visit-list if other UAVs are within radio range.

11196

Algorithm 1: Distributed Multi-UAV Network Traversing in

DroneNet.
1: Require: CurrentVertexID
2: Ensure: NextVertexID

/I Part I: Motion planning
3: if (future-vertex-visit-trajectory == ()) then
4: Regenerate the future-vertex-visit-trajectory with the longest length
that starts from an unvisited vertex;
5 NextVertexID = future-vertex-visit-trajectory’s first vertex ID;
6 Move with one step to the next vertex;
7: else
8: if (future-vertex-visit-trajectory’s next vertex is taken or null) then
9
0

future-vertex-visit-trajectory = (;
if (any unvisited neighboring vertex in North, East, South, West)

then
11: NextVertexID = random-pick(unvisited neighboring vertexes);
12: Invoke connectivity-probing();
13: Move with one step to the next vertex;
14: else
15: if (there exists any unvisited vertex) then
16: NextVertexID = the nearest vertex’s ID on the grid coordinate
from CurrentVertexID;
17: Invoke connectivity-probing();
18: Fly to the next vertex;
19: else
20: Terminate;
21: end if
22: end if
23: else
24: NextVertexID = future-vertex-visit-trajectory’s next vertex ID;
25: Invoke connectivity-probing();
26: Move with one step to the next vertex;
27: end if
28: end if

// Part II: Connectivity probing
29: Function connectivity-probing()
30: Broadcast hello packets;
31: Receive response packets from neighboring stationary nodes;
32: Calculate the average PRR for each responded stationary node;
33: Update the PRR table for CurrentVertexID and StationaryNodelD;
34: if (any UAVs within radio range) then
35: Exchange vertex-visit-list and PRR table, and update them;
36: end if
37: EndFunction

When all of neighboring vertexes in the north, east, south,
and west directions are taken, a UAV compares its vertex-visit-
list with the entire vertex list on Rol, and selects an unvisited
vertex with the shortest distance on the grid coordinate for its
next move. In this case, the UAV directly flies to the selected
vertex. If there remains no vertex to visit, it finishes the network
traversing procedure.

Our network traversing algorithm guarantees the complete
coverage of vertexes with distributed motion planning of mul-
tiple UAVs and its successful termination without overlap-
ping loops. The proofs are straightforward and omitted due
to space constraints. A more detailed algorithm is described in
Algorithm 1.

B. DroneNet+: Network Traversing

To maintain reliable route paths over stationary ad-hoc net-
works, preserving local wireless connectivity to neighboring
nodes is essential. Although local connectivity is a good indica-
tor of quantifying local route path stability, it does not necessar-
ily embed the global routing structure within itself. Thus, it is
important to diagnose the route status on the damaged network
by discovering its global route topology beyond the local one.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 67, NO. 11, NOVEMBER 2018

NW F v -

I ’
wh— N
ws i ES

sw

SE L

(a) Logical grid coordinate with adaptive adjustment of
navigation width L by UAVs

TT T
| - i

n
@

VarY
Y

SE

@ Visited Vertex (O Non-visited Vertex 2@ Regenerating Point

(b) More optimized navigation decision, leading to a longer traverse
before the next decision

Fig. 3. Adaptive UAV traversing with an effective navigation decision in
DroneNet+.

In this subsection, we propose a route topology discovery
scheme that extracts the inherent route skeletons using simple
packet probing by UAVs. Our route topology discovery consists
of two phases: network traversing and topology construction via
path stitching.

1) Adaptive UAV Path Planning: DroneNet as in Sec. [IV-A
has a drawback of using the fixed L regardless of on-going nav-
igation progress with other UAVs. Now DroneNet+ adaptively
controls the orthogonal width L of the UAV navigation. Initi-
ating its zigzag trajectory with the given L, the UAV can have
a more chance to navigate its adjacent vertexes before moving
away toward its determined moving direction. As the Rol has
been explored further together with other UAVs, it may find
any duplicate visited vertex from the exchanged vertex-visit-list
with another UAV within radio range. In this case, it decrements
the navigation width L by one so that it can lessen potential du-
plicate coverage on its future movement progress as depicted in
Fig. 3(a). Also, we devise the future vertex trajectory decision
rule of DroneNet that just randomly selects a direction with a
non-visited vertex as its next move and then generates its future
trajectory at the selected vertex after moving to it (shown at the
left in Fig. 3(b)). In DroneNet+, instead, each UAV regenerates
its future trajectory considering nearby non-visited vertexes as
soon as it completes the traversal from its previously generated
trajectory (shown at the right in Fig. 3(b)).

This adaptive UAV traversing scheme DroneNet+ greatly ad-
vances the previous DroneNet in motion planning efficiency

PARK et al.: DRONENETX: NETWORK RECONSTRUCTION THROUGH CONNECTIVITY PROBING AND RELAY DEPLOYMENT

Algorithm 2: Adaptive Multi-UAV Network Traversing in

DroneNet+.
1: Require: CurrentVertexID
2: Ensure: NextVertexID
// Part I: Motion planning
3: if (future-vertex-visit-trajectory == ()) or (future-vertex-visit-trajectory’s
next vertex is taken or null) then
4: if (any unvisited neighboring vertex in North, East, South, West) then
5: Regenerate the future-vertex-visit-trajectory with the longest length
that starts from an unvisited vertex;
6 NextVertexID = future-vertex-visit-trajectory’s first vertex ID;
7: Move with one step to the next vertex;
8: else
9
0

if (there exists any unvisited vertex) then
NextVertexID = the nearest vertex’s ID on the grid coordinate
from CurrentVertexID;

11: Invoke path-probing();

12: Fly to the next vertex;

13: else

14: Terminate;

15: end if

16: end if

17: else

18: NextVertexID = future-vertex-visit-trajectory’s next vertex ID;
19: Invoke path-probing();

20: Move with one step to the next vertex;
21: end if

// Part II: Path probing

22: Function path-probing()

23: Broadcast a path-probing packet;

24: Any neighboring stationary nodes keep relaying the probing packet
up to n hops, while recording a series of relay node IDs in header;

25: Receive completed path-probing packets stored at the currently
visiting node initiated by itself or other UAVs;

26: if (any UAVs within radio range) then

27: Exchange vertex-visit-list and update it;
28: if (any duplicated visited vertexes) then
29: Decrement the navigation width L by 1;
30: future-vertex-visit-trajectory = {);

31: end if

32: end if

33: EndFunction

by lowering duplicate coverage and travel distance until all the
vertexes are completely covered by UAVs.

2) Topology Construction via Path Stitching: We let UAVs
diagnose the overall network status during traversing by relaying
path-probing packets. We construct a global route aggregate by
stitching partial local route paths obtained from the path-probing
packets via path stitching.

a) Probing partial local path via relaying: When a UAV
visits a vertex during network traversing, it broadcasts a path-
probing packet to its stationary neighbors within radio range.
The stationary nodes are designed to relay it up to only n hops
by recording their own node ID and the current number of
transmission hops in its header. The path-probing packet finishes
being relayed to a certain stationary node upon completing n
hop transmission, and the recorded path-probing information is
stored at the node. This probing information is collected later
by a visiting UAV.

b) Topology Discovery via Path Stitching in Off-Line:
Once the network traversing procedure is completed, all of the
collected local path information by multiple UAVs are used to
extract a global route topology in off-line. Based on the path
trace information, we construct an undirected graph topology.

Given the local route path information ubiquitously collected
by UAVs, we finally construct a global route topology by stitch-

11197
L]

satie

o7 \>

Fig. 4. Topology discovery by stitching partial local route paths (over two
hops) via path stitching.

>
i

ing all the links together as in Fig. 4. A more detailed algorithm
is described in Algorithm 2.

C. Adv-DroneNet+: Advanced Network Traversing

In the prior network traversing in DroneNet+, each UAV
adjusts the orthogonal navigation width L by decrementing by
one upon encountered with another UAV, helping to reduce
the possibility of duplicate coverage around the nearby area
in the near future. However, once the navigation width L is
decremented, it stays with the current value or can only be
further decremented, never being incremented again. In case
that two UAVs are encountered, and their navigation widths are
once reduced at the beginning of network traversing stage, even
after each UAV has never been encountered with any UAV for
quite a long time, their navigation widths still keep the same
with the penalized value forever.

Our advanced network traversing algorithm addresses this
issue by allowing a time window W, which is an expiration
time interval for staying with the current navigation width. If a
UAV has not been encountered with another UAV during this
time window, its navigation width L is incremented by one so
that it is allowed to explore the nearby area a little bit more
widely before moving away toward the navigation direction.

At the beginning of network traversing, each UAV initializes
its own time window W to a constant value, initialWindow,
and decrements W by one for every vertex visit unless en-
countered with another UAV. Otherwise, the time window W
is re-initialized to initialWindow, while the navigation width
L is decremented by one. This advanced network traversing
algorithm is described in Algorithm 3.

V. UAV RELAY DEPLOYMENT

In this section, we present several UAV relay deployment al-
gorithms that find the best grid positions of multiple UAVs for
the optimal network repair. Given the collected local connec-
tivity information over Rol, we find critical network holes that
drastically undermine network-wide routing performance. We
want to deploy a limited number of available UAVs as relays
into the locations where local and non-local connection as well
as end-to-end routing can significantly be improved.

A. DroneNet: UAV Relay Deployment

Once the UAVs complete the network traversing procedure in
Sec. IV-A, we obtain the connectivity table consisting of Packet
Reception Ratio (PRR) from stationary node ID k£ at vertex ID

11198

Algorithm 3: Fully Adaptive Multi-UAV Network Traversing

in Adv-DroneNet+.

1: Require: CurrentVertexID
2: Ensure: NextVertexID

// Part I: Motion planning

3: if (W < 0) then

4: W = initialWindow:;

5: Increment the navigation width L by 1;

6: end if

7: if (future-vertex-visit-trajectory == (}) or (future-vertex-visit-trajectory’s
next vertex is taken or null) then

8 if (any unvisited neighboring vertex in North, East, South, West) then
9: Regenerate the future-vertex-visit-trajectory with the longest length
that starts from an unvisited vertex;
10: NextVertexID = future-vertex-visit-trajectory’s first vertex ID;
11: Move with one step to the next vertex;
12: else
13: if (there exists any unvisited vertex) then
14: NextVertexID = the nearest vertex’s ID on the grid coordinate
from CurrentVertexID;
15: Invoke path-probing();
16: Fly to the next vertex;
17: else
18: Terminate;
19: end if
20: end if
21: else
22: NextVertexID = future-vertex-visit-trajectory’s next vertex ID;
23: Invoke path-probing();
24 Move with one step to the next vertex;
25: Decrement the time window W by [;
26: end if

// Part II: Path probing
27: Function path-probing()
: Broadcast a path-probing packet;

29: Any neighboring stationary nodes keep relaying the probing packet
up to n hops, while recording a series of relay node IDs in header;

30: Receive completed path-probing packets stored at the currently
visiting node initiated by itself or other UAVs;

31: if (any UAVs within radio range) then

32: Exchange vertex-visit-list and update it;

33: if (any duplicated visited vertexes) then
34: W = initialWindow;

35: Decrement the navigation width L by 1;
36: future-vertex-visit-trajectory = (;

37: end if

38: end if

39: EndFunction

7, ie., [PRR]M where 1 < j < M(=m?)and 1 <k < N.To
find the network holes, we observe a set of vertexes that retain
the weakest wireless links to the neighboring stationary nodes.
Since the number of UAVs is limited, we prioritize the network
holes and select some of them as UAV deployment positions.
It should be noted that UAV's should not be deployed into the
network holes completely isolated by any neighboring stationary
nodes because the deployed relay still remains unconnected to
any of them.

To benefit the overall network from only few UAV relays
for network reconstruction, we aim to minimize duplicate net-
work coverage by prohibiting two or more UAVs from being
deployed within communication range. Thus, we want each
UAV to contribute to repairing its nearby network connectivity
without partial or complete duplicate coverage for the overall
network repair enhancement.

We formulate the problem of selecting grid positions of mul-
tiple UAVs for network repair into a binary integer program.
Our goal is to find a set of vertex regions that have the weak-

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 67, NO. 11, NOVEMBER 2018

est non-zero PRRs averaged over neighboring stationary nodes,
while avoiding duplicate coverage with any of other UAVs.

To formulate this setting, we first define a group of vertexes on
a square sub-grid within the average radio range of a wireless in-
terface as S; = {vi,, vi,, vy, ..., v; , } Where v, (1 <1< n?)
is a vertex element belonging to the set .S;, and n? is the to-
tal number of elements in set S;, and S;US, U---U Sk =
{vi,v2,...,v,,} as in Fig. 2(a). Given the P number of UAVs
to deploy, the problem of selecting P grid positions of UAVs is
to select the P number of sets with the lowest average PRRs over
their corresponding belonging vertexes among S, S, ..., and
Sk, while any selected vertex sets should not share any vertex
in common. Both S; and S; cannot be selected if S; N.S; # 0.
For example, in Fig. 2(a), both S} and S, cannot be selected
as deployment vertexes. This implies that we want to deploy
a UAV into a group location of vertexes of which most or all
suffer from similarly poor connection.

We introduce indicator functions .J; denoting the vertex group
set S; should be selected, and I; ; denoting whether the vertex
group set S; and its belonging vertex v; should be selected.
Based on these notations, we define the objective function to
minimize the summation of the average PRRs of the selected
vertexes in the selected vertex set as follows:

PRR; - I (1)

minimize

subject to Vi (2)

Ji=lig =lLi,=Li=-=L;, Vi 3
> Ji=P)

where PRR; is the average PRR over only the stationary nodes
with non-zero PRRs at vertex v;. In case that vertex v; has no
connection at all, i.e., PRR; = 0, we force it to be 1 so that
isolated vertexes should never be selected.

Constraint (2) ensures that any selected vertex sets should
not share any vertex in common to avoid duplicate coverage.
Constraint (3) enforces the condition that once a vertex group set
S; is selected, any belonging vertex v; € S; should be selected.
The last constraint (4) requires the total number of selected
vertex group sets to be the same number of UAVs.

By using MATLAB bintprog utility or AMPL/CPLEX solver,
we can obtain the optimal sets of the most vulnerable vertex
groups under critical link outage. Since each UAV ends up with
the entire connectivity table for all the vertexes at the end of
network traversing procedure, it calculates them for itself. Once
each UAV tracks down to these sets, it determines one of sets
according to the order of UAV ID, and flies directly to the center
position of the selected vertex group for its self-deployment.
These positions are exactly where the deployed UAVs can be
used as crucial relay resources for starting repairing the locally
broken network.

B. DroneNet+: UAV Relay Deployment

We present a more computationally-efficient iterative UAV
deployment algorithm that improves routing performance
through a heuristic approach from a higher-level routing

PARK et al.: DRONENETX: NETWORK RECONSTRUCTION THROUGH CONNECTIVITY PROBING AND RELAY DEPLOYMENT

perspective. We locate and prioritize network holes based on
the captured route topology in Sec. IV-B and deploy UAVs as
relays to connect with terrestrial networks.

To understand the inherent global routing structure over the
networks, it is necessary to find out crucial skelefon nodes that
connect not only local neighboring nodes but rather other neigh-
boring sub-networks. To extract those skeleton nodes in the
networks, we incorporate a connectivity-based clustering algo-
rithm and use the selected cluster heads to efficiently connect
via inter-cluster networking.

Once the skeleton nodes are obtained, we associate two-tier
networks: a network of real nodes (i.e., cluster heads) and the
other network of virtual nodes (i.e., vertexes, which are candi-
date spots for UAV deployment). To gain the knowledge of parts
of vertexes with high connectivity toward real skeleton nodes,
we precompute a measure of how much the overall routing per-
formance can be improved when comparing between before and
after UAVs are deployed at the vertexes.

After prioritizing those vertexes, we dispatch UAVs to the
most effective vertexes that lead to the most influential network
repair in terms of routing performance. We iteratively find ver-
texes, deploy UAVs to their locations, and perform this iteration
continuously until all the UAVs are dispatched.

1) Connectivity-Based k-hop Clustering: We present a sim-
ple yet efficient connectivity-based k-hop clustering method
performed in a centralized manner similar to [44], [45], which
does not require any node location and better reflects empiri-
cal wireless connectivity behaviors. Using a constructed route
topology, we count the number of connected neighboring nodes
for each node within k£ hops and then prioritize the node list in
the descending order.

We initially elect a node with the highest connectivity as the
first cluster head. Given this cluster head, all of the nodes within
k hops from the cluster head join this cluster as cluster members.
Once a cluster head and its belonging members are determined,
we exclude these nodes from the above node list. We continue
this procedure for the remaining nodes in the list until all the
nodes are traversed. If there are a few nodes with the same
number of neighbors in the cluster head selection, we randomly
pick up one node among them as the next cluster head. It should
be noted that a cluster head without any member is prohibited,
and thus, there can exist some single nodes that do not belong
to any cluster.

Our connectivity-based clustering approach enables to under-
stand high-level route establishment over the entire networks
through several cluster heads used as skeleton nodes.

2) Network Hole Replacement With UAV Relays: Our net-
work hole replacement algorithm consists of two phases:
multi-level clustering and deployment. First, we perform a
connectivity-based k-hop clustering for all of stationary nodes
based on the obtained route topology. This captures high-level
skeleton nodes that serve an important role to connect with even
farther nodes.

Once cluster heads are elected, we perform additional cluster-
ing only for cluster heads (that are real nodes), and vertexes (that
are virtual nodes considered as candidate places where UAV's
can be deployed). Then, we obtain vertex cluster heads and
their belonging members. This second-tier clustering offers an
informative high-level connectivity structure of how virtual

11199
NP —
o0 o= o K
A & e
o0 0" o XK.
O—<___ ___©
QO stationary cluster head (Tierl) A Vertex cluster head (Tier2) x Not selected
Stationary node Vertex
(a) Possible vertex cases to connect two cluster (b) Validation check

heads at each end within two hops (2nd Case) with no better route

Fig.5. Iterative clustering and deployment decision procedure in DroneNet+.

nodes located at vertex positions can deeply be associated with
cluster heads, skeleton nodes in real networks. We select the
most influential vertex positions with the highest impact on
route connectivity with skeleton nodes as the deployment posi-
tions of UAVs.

We consider three deployment cases for UAVs: 1) a vertex
that can connect one cluster head at the one end with another
at the other end within one hop, 2) a vertex to connect two
cluster heads at each end within two hops, and 3) a vertex to
connect two cluster heads at each end within three hops, as the
second case is depicted in Fig. 5(a). If two cluster heads have
any existing paths with the lower number of hops away not
through the vertexes within the designated number of hops for
each case, we no longer consider these vertexes as deployment
candidates as illustrated in Fig. 5(b). This is due to the fact that
the deployment of UAVs at those positions are definitely not
a desirable choice compared to otherwise scenarios with two
cluster heads connectable only through the vertexes.

Our network hole replacement algorithm iteratively tries to
deploy all possible UAVs to the most effective vertexes. To
evaluate the route effectiveness of UAV deployment at certain
vertex locations, we probe routing performance improvement in
case of deploying UAVs at vertex candidates. We calculate the
percentage of source-to-destination pairs with no existing path
among all possible within A hops from the vertex for both before-
deployment and after-deployment scenarios. As the percentage
difference between before and after increases, it is reasonable
to say that the effectiveness of UAV deployment increases. We
prioritize all possible vertex candidates for UAVs to be deployed
in the descending order of this effectiveness measure. UAVs are
consequently deployed to the vertexes with the highest route
effectiveness.

In case that all of UAVs are not deployed at this stage yet,
we continue the above multi-level clustering and deployment
procedures by extending to the second deployment case, and
doing so up to the third deployment case. It should be noted that
once some UAVs are deployed at the selected vertexes, we treat
the UAVs as normal stationary nodes at the remaining clustering
and deployment procedures.

Even after executing over all three deployment cases, there
can still be remaining UAVs to be deployed yet. We prioritize
the remaining vertexes in the descending order according to
the number of neighbors within & hops after deploying all pos-
sible UAVs at the prior steps, and eventually deploy all the
remaining UAVs to them.

11200

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 67, NO. 11, NOVEMBER 2018

Algorithm 4: Deployment of UAV Relays at Network Holes
in DroneNet+.

Algorithm 5: Deployment of UAV Relays at Network Holes
in Adv-DroneNet+.

1: Require: Route topology & # of available UAVs for relay deployment
2: Ensure: selectedVertexesForUAVs

3: selectedVertexesForUAVs = (),
/I Deployment case 1 to 3: multi-level clustering & deployment
: deploymentCase = 1;
: while(deploymentCase <= 3)
/I 1st-tier clustering for all stationary nodes using & hops
// return stationary cluster heads

6: sClusterHeads = connectivity-clustering(stationaryNodes);

// 2nd-tier clustering for stationary cluster heads and all vertexes

/I using deploymentCase hops

// return vertex cluster heads
7 vClusterHeads = connectivity-clustering(sClusterHeads U vertexes,

deploymentCase hops);

8: Find parts of vClusterHeads connecting two sClusterHeads through;
9: Exclude ones with any existing route within deploymentCase hops;
10: Prioritize all possible vertex candidates in terms of route effectiveness;
11: Deploy all possible UAVs to the prioritized vertexes;
12: Update selectedVertexsForUAVs with them;
13: vertexes <— vertexes — selectedVertexesForUAVs;
14: stationaryNodes <— stationaryNodes U selectedVertexesForUAVs;
15: deploymentCase++;
16: endwhile

17: if (any UAVs still left) then

18: Deploy remaining UAVs to vertexes with the highest # of neighbors
within £ hops;

19: Update selectedVertexesForUAVs with them;

20: end if

[V

This iterative algorithm provides a lightweight yet effective
deployment decision for multiple UAVs, contributing to sig-
nificant improvement in routing performance. A more detailed
algorithm is described in Algorithm 4.

C. Adv-DroneNet+: Advanced UAV Relay Deployment

Although DroneNet+ captures the inherent route skeletons
among stationary cluster heads and focuses on a new route estab-
lishment between two cluster heads for network recovery, it may
neglect some more effective route establishment between sta-
tionary nodes that are not classified as stationary cluster heads,
near the boundary of interfacing clusters.

In this subsection, we propose a new network hole replace-
ment algorithm that captures globally connected sub-network
dynamics based on the concept of strongly connected compo-
nent [46], [47] in graph theory. A strongly connected component
is a graph structure where every node is reachable from every
other node through a valid route.

We first construct a directed graph based on the constructed
route topology from Sec. IV-B. Then, we partition the directed
graph into strongly connected components. Our goal is to con-
nect these isolated strongly connected components each other
by deploying available UAV relays. Given the limited number
of UAVs for deployment, we prioritize all possible combination
pairs of two components among the extracted strongly con-
nected components, which can directly be connectable if one
UAV relay is deployed at a certain vertex.

To prioritize multiple candidate pairs, we count the total
number of nodes that belong to two components if they are
reachable via a newly deployed UAV . After finding out one
pair of two reachable components, there may exist several
vertexes where a deployed UAV can relay between these

: Require: Route topology & # of available UAVs for relay deployment
: Ensure: selectedVertexesForUAVs

: Construct a directed graph from Route topology;

: Partition the directed graph into strongly connected component;

: Calculate a priority metric of each component, p, as the number of nodes
belonging to the component;

: pairList = all possible pairs of two components that are reachable via one
vertex;

7: Sort pairList by the descending order of the summation of each compo-

nent priority, i.e., the total number of nodes within them;

8: index i = 1; flag break = false;

9: while (# of selectedVertexesForUAVs < # of available UAVs)

10: if (¢ > the last index of pairCandidate) then

[TS I SR

=N

11: if (break) then

12: Break from the loop;

13: else

14: i=1;

15: break = true;

16: end if

17: pairCandidate = the ith priority pair from pairList;

18: vertexCandidate = all possible vertexes that can connect
pairCandidate each other;

19: Calculate the percentage of source-to-destination pairs with no valid

route among all stationary nodes of before-deployment and
after-deployment cases for all vertexCandidate;

20: selectedVertexForUAVs < selectedVertexForUAVs U Vertex that has
the largest improvement between before and after;

21: i++;

22: endwhile

23: if (any UAVs still left) then

24: Deploy remaining UAVs to vertexes with the highest # of neighbors

within k& hops;
25: Update selectedVertexesForUAVs with them;
26: end if

two components. To select the most effective vertex among
them, we calculate the percentage of source-to-destination
pairs with no valid route among all the stationary nodes
for before-deployment and after-deployment at each vertex
candidate. A vertex with the largest improvement is selected
as the deployment position for the first UAV. We iteratively
continue to perform the above deployment. After all possible
component-to-component-wise connections are repaired, if
there still exist deployable UAVs, one additional UAV is allowed
to be deployed between already-connected two components in
the order of component pair priority for fault-tolerance. A more
detailed procedure is described in Algorithm 5.

VI. EVALUATION

We evaluate three versions of our route recovery algorithm,
DroneNet, DroneNet+, and Adv-DroneNet+ in a network of 64
stationary nodes over the Rol of 144 x 144 m” as in Fig. 6.
We simulate a damaged network consisting of almost half
(~ 53.8%) broken source-to-destination pairs with no route out
of all possible pairs in TinyOS 2.1.2 TOSSIM environment. To
model the radio propagation, a combined path-loss shadowing
model with a path-loss exponent of 3.3, a shadowing standard
deviation of 5.5 dB, a reference distance of 1 m, a power decay
of 52.1 dB, aradio noise floor of —104 dBm, a high asymmetric
link model, and a white Gaussian noise of 4 dB in TOSSIM
LinkLayerModel are used. To reflect a more realistic in-
terference environment, we incorporate the CPM interference
model [48] with meyer-1ight noise traces.

PARK et al.: DRONENETX: NETWORK RECONSTRUCTION THROUGH CONNECTIVITY PROBING AND RELAY DEPLOYMENT

Y (m)

150

X (m)

Fig.6. Network topology of 64 sensor nodes over Rol in a simulated network,
having almost half source-to-destination route pairs with no existing path (where
good communication links are shown for PRR > 75%).

We focus on more in-depth network performance improve-
ments in a relatively small but critically damaged network even
using a small number of UAVs. The simulation results are still
valid for a large scale network under critical damage, with a
fairly larger number of UAVs. We believe that our simulation
setting does not provide qualitatively different results, serving
as a reasonable representative to effectively show the inherent
performance.

In our experiments, the total number of vertexes is 100 where
m = 10, and UAVs fly at the height of 3 m. For relaying probing
packets over stationary nodes, we use three maximum number
of retransmissions. The parameters of n = 1 on the number
of relaying hops, k = 1 on connectivity-based clustering, and
A =1 on network hole replacement are tuned to be used for
DroneNet+. The parameter of initialWindow is set to one unit
time where one unit time is the traveling time from a vertex
to its adjacent vertex, i.e., 7.2 seconds, in Adv-DroneNet+. We
show the average performance over 10 independent simulations,
unless otherwise noted.

Our validation is divided into two parts: network traversing
based on motion planning and network hole replacement algo-
rithms. First, we evaluate network traversing performance of
DroneNet, DroneNet+, and Adv-DroneNet+ in terms of com-
plete coverage time, travel distance, and duplicate coverage rate
by varying the number of UAVs compared to Ants [8] and
a centralized optimal solution that solves the Multiple Trav-
eling Salesman Problem, mTSP [49] serving as a theoretical
bound. Second, we investigate network repair performance of
DroneNet, DroneNet+, and Adv-DroneNet+ in terms of end-to-
end routing cost and source-to-destination pairs with no route,
as opposed to an upper-bound counterpart algorithm. We quan-
tify the computation complexity of our deployment algorithms
in terms of the number of iterations and running time. Also, we
evaluate dynamic network recovery performance as stationary
nodes become dying out over time.

A. Network Traversing

We explore the efficiency of our UAV traversing algorithms.
The flying speed of UAVs is assumed to be 11.1 m/s (as per
Parrot AR.Drone 2.0 specification). The initial position of each

11201

180

- @~ Ants
160

140 %\
N
~ = @~ Adv-DroneNet+

120 SN

N
N
N
\\
100 ~ N
ST~ —
SS:=LT ~ S~<
S ~ -~
80 =

==& DroneNet

~—d - DroneNet+

—& - mTsP

-~ - S~
. U St D
C— Sem =g -
60 T e
. Se- C e~

Network Traversing Time (sec)

10 T~ —

20

2 #ofuavs >

(a) Complete coverage time per UAV for network traversing

[—4— DroneNet — -DroneNett -~ Adv-DroneNetr |
12 |
§ > ~
. ~
g 1 SN~
= SN~
u ~ ~
D 2N
— 08 ~ -
g =3 =~
> e~
° S s
S R
06 R
el
0.4 T
2 3 4 5
of UAVs

(b) Travel distance per UAV

35 4

«=& :DroneNet =s= DroneNet+ ==& -Adv-DroneNet+ l

30 4
25 4

20 4 < .o —

Duplicate Coverage (%)

of UAVs

(c) Duplicate coverage rate per UAV

Fig.7. Network exploration performance comparison with respect to the num-
ber of UAVs with the error bars of standard deviation.

UAV is placed at a randomly selected vertex. We measure the
complete coverage time and the average travel distance of each
individual UAV until UAVs finish the network exploration. The
initial navigation width L = 4 is used. We quantify the dupli-
cate coverage of how much the vertexes visited by a UAV are
overlapped with those by other UAVs. We run 50 simulations
and show the average performance in results.

Regarding the complete coverage time, all of our traversing
algorithms outperform Ants that does not share visited vertex
information with other agents. DroneNet, DroneNet+, and Adv-
DroneNet+ reduce the network traversing time spent for the
complete coverage over Rol in Fig. 7(a). This implies that shar-
ing previous trajectory information with other UAVs is essen-
tial to reduce duplicated exploration. Furthermore, DroneNet+
lessens the network traversing time with up to 14.5% compared
to DroneNet, while Adv-DroneNet+ further reduces with up to
11.1% compared to DroneNet+. This means that the adaptive

11202

control of navigation width L by both incrementing and decre-
menting depending on the coverage progress of other UAVs
plays an important role on navigation efficiency by reducing
the duplicate coverage. Moreover, to deeply understand the
traversing performance achievable by our proposed practical
algorithms, we find a theoretical limit of traversing time by
solving an mTSP, which offers an optimal solution. It should
be noted that mTSP finds out the optimal traversal in a central-
ized manner under global knowledge, whereas our traversing
algorithms perform in a distributed manner under only partially
self-collected information. Although our algorithm keeps op-
timized from DroneNet, DroneNet+ toward Adv-DroneNet+,
which is a heuristic distributed one, its resulting performance is
approaching to a theoretical bound of mTSP and has a relatively
similar tendency with it, as the number of UAVs increases.

We measure travel distance and duplicate coverage in
Figs. 7(b) and 7(c), respectively. Although Adv-DroneNet+ has
aslightly lower travel distance than DroneNet+, and DroneNet+
has the better performance than DroneNet, all three motion plan-
ning algorithms reduce travel distance as the number of UAVs
increases and show the similar performance on navigation ef-
ficiency in the space domain as in Fig. 7(b). As for duplicate
coverage in Fig. 7(c), DroneNet+ reduces the duplicate cov-
erage to 11.5% compared to DroneNet with 20.7% thanks to
the adaptive navigation control by decrementing the navigation
width L. Adv-DroneNet+ lessens the duplicate coverage down
to 8.4%, even lower than DroneNet+, showing that the adaptive
navigation control by widening the width is an important factor
for improving navigation efficiency.

We discuss the scalability of our network traversing algo-
rithm. Since our network traversing performs on the basis of
vertex-based grid coordinate, its performance is not dependent
of the number of stationary nodes, but rather dependent of the
number of vertexes (which is fixed). Thus, the network travers-
ing performance is scalable with the number of nodes.

B. Network Recovery

We investigate network recovery performance of our algo-
rithms to measure how the selection of UAV deployment posi-
tions reduces the number of network holes and improves routing
cost. We compare DroneNet, DroneNet+, and Adv-DroneNet+
with an upper bound algorithm. We devise an upper bound al-
gorithm, Sub-Optimized scheme that makes a recursive attempt
to check all possible subsequent deployment positions given the
past UAV deployments in a brute-force manner. This scheme
makes a series of UAV deployment decisions that can lead to
the lowest network hole fraction and the most effective route
repair.

We measure routing cost in Fig. 8 when each algorithm of
DroneNet, DroneNet+, Adv-DroneNet+, and a Sub-Optimized
upper bound algorithm is applied to the same damaged network
where 53.8% of source-to-destination routing pairs have no ex-
isting path as in Fig. 6. Routing cost is measured as the sum of
the expected number of transmissions over routing hops. As the
cumulative distributions of routing cost are shown in Fig. 8(a),
Adv-DroneNet+ outperforms DroneNet and DroneNet+, show-
ing the lowest routing cost over the overall routing cost range.
Also, one interesting observation is that our Adv-DroneNet+

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 67, NO. 11, NOVEMBER 2018

100

90 -

80

70

60

50

40

Cumulative Fraction (%)

30

Before Deployment
- - = DroneNet (5 UAVs)

-+ DroneNet+ (5 UAVs)
dv-DroneNet+ (5 UAVs)| |
Sub-Optimized

20

0 5 10 15 20 25
Routing Cost

(a) Cumulative distribution of routing cost of DroneNet,
DroneNet, adv-DroneNet+, and Sub-Optimized algorithms

60

a
3

40t

Percentage of src-dst Pairs with No Route (%)
@
8

0
Before Deployment DroneNet DroneNet+ Adv-DroneNet+ Sub-Optimized

(b) Net routing hole percentage of DroneNet, DroneNet,
adv-DroneNet+, and Sub-Optimized algorithms with 5
UAVs

30

N
o

N
S

5

Distribution of Routing Hole Percentage (%)
o =

0

DroneNet+ Adv-DroneNet+

(c) Stability performance for DroneNet+ vs. Adv-
DroneNet+ with 5 UAVs

~ur@een: DroneNet+
—-4=- Adv-DroneNet+ | |

~
o

IS
S

©w
&

©
S

N
5]

o

=)

Percentage of src-dst Pairs with No Route (%)
N
e &

12345678 910111213141516171819202122232425
#of UAVs
(d) Routing performance improvement with respect to
the number of UAVs

Fig. 8. Network recovery performance comparison with a counterpart algo-
rithm and one another in terms of the end-to-end routing cost.

PARK et al.: DRONENETX: NETWORK RECONSTRUCTION THROUGH CONNECTIVITY PROBING AND RELAY DEPLOYMENT

based on a relatively lightweight iterative approach works bet-
ter than Sub-Optimized upper bound algorithm that requires high
computation complexity, under the routing scenarios with the
low and the middle range of routing cost.

As measured in Fig. 8(b) for the net routing hole percent-
age by taking the average value over 10 simulations, DroneNet,
DroneNet+, and Adv-DroneNet+ lead to the network hole per-
centage of 31.7%, 19.3%, and 17.8%, respectively, while Sub-
Optimized shows the lowest percentage of 7.7%. In particular for
a more intricate performance comparison between DroneNet+
and Adv-DroneNet+, we show the distribution of the percentiles
(0, 25, 50, 75, and 100%) of the routing hole percentage as in
Fig. 8(c). DroneNet+ has performance variations due to some
randomness from clustering, whereas Adv-DroneNet+ has a
very stable performance in its network recovery evaluation.

We investigate how each additional UAV deployment can en-
hance routing performance in Fig. 8(d). DroneNet+ improves
routing performance eventually with some fluctuation in the
middle of UAV usage, while Adv-DroneNet+ shows a more ef-
fective and stable performance. DroneNet+ achieves the invalid
route ratio of 8.7% via 21 UAVs, whereas Adv-DroneNet+ re-
quires only 10 UAVs reaching at an even lower ratio of 6.2%.
More UAV deployment beyond this necessary number of UAV's
may become redundant, but at the same time starts having fault-
tolerance in return.

C. Effect of Design Parameters

We discuss how different design parameters in our algorithms
affect system performance in Figs. 9 and 10. First, we investi-
gate how the probing density affects routing performance and
communication overhead in DroneNet. We measure communi-
cation overhead as the accumulated packet transmissions for
sending hello packets and response packets from each UAV,
and exchanging the vertex-visit-list and the PRR table among
UAVs. As shown in Fig. 9(a), as the probing density increases
from 7 x 7 to 10 x 10, approximately by two, we can achieve
routing performance improvement with a factor of 3.1, while
consuming more communication overhead with a factor of 2.3.
This demonstrates that DroneNet can achieve a higher benefit
of network-wide data delivery with a relatively smaller network
overhead increase, showing an interesting trade-off relationship.

We explore the effect of the maximum hop distance of relay-
ing the path-probing packet, n in DroneNet+ on the accuracy of
correctly inferred links among ground-truth links as in Fig. 9(b).
As the the number of relaying hops increases, the inference ac-
curacy also increases. The required communication overhead of
path-probing broadcast, on the other hand, becomes accordingly
larger. As a reasonable trade-off point, n = 1 is selected in our
experiments where 92.6% of links are correctly inferred.

In Adv-DroneNet+, we have introduced the time window such
that after passing the window without encountering other UAVs,
the navigation width L is incremented by one. We explore the
effect of the window size on network traversing efficiency, show-
ing the average and the standard deviation over 50 simulations
as in Fig. 10. Since UAVs spend 7.2 seconds to move from one
grid point to another adjacent one, we use this value as one unit
of the time window. As varying the time window from 0O to 2
(i.e., from 0 second to 14.4 seconds), all of traversing metrics,
network traversing time, travel distance, and duplicate coverage

50 +

Percentage of src-dst Pairs with No Route (%)

45

40

35 4

30 4

25 4

20 4

15 A

10 A

| | == -Relative Communication

---m- Percentage of src-dst Pairs with
No Route (%)

Overhead

rl2

r 08

r 0.6

r 04

r 02

7x7 10x10
Total # of Vertexes over ROI, M (=mxm)

11203

Relative Communication Overhead

(a) Impact of sampling grid size on network communication
overhead in DroneNet

100 4

95 -

Accuracy of Inferred Links (%)

65

90 -

85

80 -

75 4

70 A

—ah - Inference Accuracy

=@ - Communication Overhead

r 18000

F 16000

F 14000

F 12000

F 10000

F 8000

F 6000

F 4000

F 2000

Communication Overhead

60 T T 0
1 2 3

n

(b) Valid route inference performance and communication
overhead of broadcast control packets in DroneNet+

Fig. 9. Effect of design parameters in DroneNet and DroneNet+.

lead to the lowest upon selecting one unit of time window (i.e.,
7.2 seconds). This means that the navigation width would rather
be reverted back when the UAV reaches a next grid point after
encountering a UAV and leaving the current grid point while
moving with its reduced navigation width.

D. Computation Complexity

We measure computation complexity in terms of running time
in Fig. 11. Our experiments have used LG B70CV desktop with
Intel 17-4790 3.60 GHz CPU and 8 GB RAM. We quantify
the running time between DroneNet and DroneNet+, and be-
tween DroneNet+ and Adv-DroneNet+. As in Fig. 11(a), our
DroneNet+ spends a little time to compute the solution within
seconds based on a heuristic distributed algorithm, whereas
DroneNet takes much more time to solve its optimization prob-
lem based on a centralized computation. This implies that our
algorithm provides a lightweight practical approach, making it
feasible with a larger number of UAVs. Regarding the compari-
son between DroneNet+ and Adv-DroneNet+, as in Fig. 11(b),
Adv-DroneNet+ takes more running time for partitioning into
strongly connected components than DroneNet+. This is a per-
formance trade-off between network recovery and computation
complexity for choosing either DroneNet+ or Adv-DroneNet+.

11204

60 -

55 A

45

40

Network Traversing Time (sec)

30 : : .
0 7.2 14.4

Time Window (sec)

(a) Complete coverage time with respect to the win-
dow size

[
y

o
o0
L

o
)}
L

o
>
L

o
N
L

Travel Distance (km)
)
)
1
1
]
1
1
)
1
1
(]
]
1
1
L 4
1
1
1
1
)
1
1
]
1
1
)
1
)
1
HH

o

0 7.2 14.4

Time Window (sec)

(b) Travel distance with respect to the window size

21 4
18 A
15 A
12 A

Duplicate Coverage (%)

o w o ©
!

0 7.2 14.4

Time Window (sec)

(c) Duplicate coverage rate with respect to the win-
dow size

Fig. 10. Network exploration performance comparison with respect to the
window size in Adv-DroneNet+.

We discuss the scalability of our deployment algorithms. Both
DroneNet+ and Adv-DroneNet+ first find out crucial clusters,
and then decide the deployment position in the space of the
vertex grid coordinate, which is independent of the number
of stationary nodes. Thus, our deployment algorithms are also
resilient with the number of nodes in the network, achieving
scalability.

E. Dynamic Performance

We examine dynamic network recovery performance of
DroneNet+ and Adv-DroneNet+ in a gradual network break-
down scenario. We use a simulated network of 100 stationary
nodes with the initial power budget of 2.5 W over the Rol of
144 x 144 m?. It is assumed that the radio transmission and re-
ception drive the current of 17.4 mA and 19.7 mA, respectively,
with the external power supply of 3.3 V, according to the MicaZ

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 67, NO. 11, NOVEMBER 2018

3500

3000 - Sp——
- ‘ -

J 2500 - _--
@ ~
g 2000 - ’
= /7
2 1500 - a
E / = &= DroneNet
& 1000 - ’

(= A& =DroneNet+

- ”
500 —
rd
rd
0o - -—- A - - —A——-— A== -A

of UAVs

(a) Running time with respect to # of UAVs for DroneNet vs.
DroneNet+

20 4

16 1 -0
< _--
o} -~
o o-----"" L
o 12 4 ,/
£ -
— ’,
o
£ 8+ ,z'
g ’,‘ — - DroneNet+
3 rd
o -~ = @= Adv-DroneNet+
4 s
[4
o A— — —h — —A— — o — —A
1 2 3 4 5
of UAVs

(b) Running time with respect to # of UAVs for DroneNet+ vs.
Adv-DroneNet+
Fig. 11. Computation complexity in terms of running time.

100 @t 100

++ -+ Stationary Nodes
—&— Before Deployment 30

—4— DroneNet+ (5 UAVS) 2

—@— Adv-DroneNet+ (5 UAVs) 10

Fraction of Survived Stationary Nodes (%)

0 1 2 3 4 5 6 7 8 9

Percentage of src-dst Pairs with No Route (%)

10 11 12 13 14 15 16 17 18 19 20
Round

Fig. 12. Dynamic network recovery performance as stationary nodes become
dying out over time.

mote specification. If a node consumes all the remaining power,
we let it inactive for any network operation so that the net-
work can get disconnected gradually over time. At each round,
30 source-to-destination pairs randomly chosen perform data
transmission along their own shortest path. As in Fig. 12, as the
number of active stationary nodes even gradually decreases, the
network gets dramatically disconnected, significantly breaking
down existing routes. If both DroneNet+ and Adv-DroneNet+
are allowed to apply their own adaptive route recovery procedure
using 5 UAVs at each round, the speed of the network break-
down becomes slower compared to no deployment case. While
Adv-DroneNet+ outperforms DroneNet+ in general under the
steady-state performance, DroneNet+ can sometimes work bet-
ter in some cases (e.g., in the round of 6-10). This is because
our current Adv-DroneNet+ finds out a deployment position that

PARK et al.: DRONENETX: NETWORK RECONSTRUCTION THROUGH CONNECTIVITY PROBING AND RELAY DEPLOYMENT

can directly connect two partitioned components via only one
newly deployed UAV, whereas DroneNet+ finds out a series of
deployment position that can connect two crucial isolated nodes
via at most two newly deployed UAVs in series. Although the
effective number of nodes participating in the network keeps de-
creasing due to the battery outage even after deploying 5 UAV
relays, our both adaptive UAV deployment algorithms keep re-
organizing their effective deployment positions at each round
with fault-tolerance, avoiding substantial route outages as much
as possible.

VII. DISCUSSIONS

We discuss some crucial aspects: 1) how the effective num-
ber of UAVs is associated with the network collapse degree;
2) when a certain factor between network traversing and de-
ployment decision is more important; 3) the possibility of inte-
grating network traversing and deployment into one stage with
a progressive manner for responsiveness; and 4) practical issues
for real-world applications.

A. Relationship of the Number of UAVs With the Network
Collapse Degree

Depending on the network collapse degree after a disaster,
the suitable number of UAVs for network recovery varies. In a
damaged network with almost half broken source-to-destination
pairs with no route as in Fig. 6, using 5 UAVs is a cost-effective
choice, showing feasible network traversing and routing per-
formance. If the network becomes more critically damaged
over time or after a subsequent disaster, the required number
of UAVs may increase. By employing more UAV resource, the
advantage is two-fold. First, the overall network traversing time
can be reduced due to our collaborative exploration algorithm
by letting distributing the given coverage area to more UAVs
with less overlap. Second, the overall network recovery per-
formance can be enhanced by deploying more number of relays
where critically damaged sub-networks are located. On the other
hand, some computation overhead for finding their suitable de-
ployment positions is inevitable in return. Thus, the number of
UAVs to use as relays should be determined by considering the
trade-off relationship among network collapse degree, network
traversing time, network recovery performance, and computa-
tion complexity all together.

B. Network Traversing vs. Deployment Decision

Our proposed scheme consists of network traversing and de-
ployment decision with two phases. In terms of running time,
the network traversing phase takes a longer portion than the de-
ployment phase since the physical vertex-to-vertex movement
by UAVs usually takes more time than running an algorithm
in an embedded system. In case that the execution time is the
most critical factor for operating this system under emergency,
the network traversing can be a bottleneck. Leveraging a large
number of UAVs (irrespective of the network collapse degree)
would decrease the network traversing time. On the other hand,
calculating the deployment positions for the increased number
of UAVs takes more time in the subsequent deployment phase.
In this case, we may use only necessary UAVs for deployment
where the number of UAVs in the deployment phase is not

11205

necessarily the same as that in the former phase. Since the net-
work traversing is decoupled with the UAV deployment, we can
separately choose the necessary number of UAVs for network
traversing and deployment, respectively.

Although the network traversing and the deployment are de-
coupled in their separate phases, the deployment performance
is highly associated with the former network traversing perfor-
mance. If the network traversing granularity becomes sparse,
both network traversing time and communication overhead
would be saved. However, the subsequent deployment position
should be determined among rough candidate vertexes, leading
to less accurate deployment decision. Therefore, the network
traversing and the deployment decision should be co-optimized
considering the constraints of given physical resource, time, and
routing performance.

C. Progressive Network Traversing and Deployment

Our two-phase network reconstruction scheme may not be
an optimal solution for quickly recovering a damaged network
since UAVs can start contributing as relays only after the prece-
dent network traversing procedure is completed. In this situa-
tion, integrating both traversing and deployment into one stage
can be a more effective solution. Each UAV starts exploring its
local space and determining its temporary deployment position
among possible locally optimal candidates. As a UAV becomes
more knowledgeable by itself or from other encountered UAVs,
it can gradually find a more globally optimal deployment posi-
tion with a progressive manner. In this way, the response time
for network recovery can significantly be reduced even if its ini-
tial performance is not optimal, and the performance gets more
improved as the operation continues. Also, this progressive net-
work traversing and deployment can be a practically better fit to
a dynamically changing disaster scenario than a one-shot (un-
realistic) disaster scenario thanks to its reduced response time.

Our two-phase network reconstruction scheme runs a cen-
tralized computation for obtaining the optimal deployment po-
sitions. On the other hand, the progressive one-phase scheme
can compute them in a distributed manner based on the currently
obtained information at the UAV, without collecting global in-
formation from all the UAVs. In this way, the algorithm can be
more resilient against unexpected data collection or communi-
cation failure scenarios between UAVs.

D. Practical Issues

We discuss some real-world considerations for the practical
feasibility of our proposed algorithms, and how we could extend
our work to reflect more practical issues.

1) Battery of UAVs: To reflect the battery issue of UAVs,
we need to estimate the empirical relationship between the re-
maining energy and how long a UAV can operate. Based on
this empirical model, we can let a UAV go back to a pre-
determined charger station in need or via an energy-aware path-
planning among communicable UAVs. Upon deployment, we
can extend our algorithm such that for example, more powered
UAVs may be deployed to more critically disconnected areas
to achieve more energy-tolerant deployment decisions under
energy-constrained UAVs.

11206

2) Physical Constraints: A real-world environment is sur-
rounded by various physical constraints such as obstacles, and
building structures that may impede the UAVs’ mobility. To
overcome the challenge, we can extend to a path planning in 3D
space. During the probing procedure, UAV's may need to collect
obstacle information as well as network information. We also
have to consider the effect of obstacles on UAVs’ communica-
tion coverage during the deployment.

3) Mobility: If some nodes with moderate mobility are in-
cluded in a terrestrial network, the constructed network topology
may be outdated soon, and accordingly, its subsequent one-shot
deployment decision would not provide accurate results. In this
scenario, the network traversing and the deployment procedures
should be more tightly coupled so that the network topology
needs to be updated over time, and a dynamic deployment de-
cision based on the up-to-date probing information should be
made.

VIII. CONCLUSION

We have presented a self-organizing UAV deployment al-
gorithm based on sparse network status probing from the air
along with a distributed coverage path planning by UAVs. We
have designed several variants of network traversing algorithm
based on a fully distributed local decision for its next move-
ment, while minimizing the duplicate coverage and guaran-
teeing complete coverage. Then, we have presented topology
discovery schemes for capturing both local and non-local route
topology that embeds inherent route skeletons based on broad-
cast and path stitching techniques. By pinpointing network hole
locations, we have developed several practical network hole re-
placement algorithms that dispatch a limited number of UAV's
to the selected hole spots, leading to both local and global im-
provement on routing performance.

Our experiments demonstrate that our scheme has signifi-
cantly achieved both network probing efficiency and routing
recovery performance by exploiting the efficiency in coverage
path planning and UAV deployment compared to a baseline
counterpart, the popularly used multi-agent exploration algo-
rithm Ants and a sub-optimal brute-force algorithm. Our pro-
posed framework provides a well-balanced mixture of network
traversing and relay deployment by letting each UAV play a
suitable role at each necessary step.

For future work, we may interleave the route topology dis-
covery together with progressive UAV deployment, achieving
higher efficiency and responsiveness, and suppressing unneces-
sary discovery. It would be interesting to consider more practi-
cal aspects such as battery recharging of UAVs to reflect in the
path planning of UAVs, and considering mobile nodes in terres-
trial networks. Also, we could extend the problem by allowing
UAV’s transmission power control, and validate our algorithms
in a real-world testbed consisting of terrestrial sensors and aerial
drones.

REFERENCES

[1]1 L. Gupta, R. Jain, and G. Vaszkun, “Survey of important issues in UAV
communication networks,” IEEE Commun. Surv. Tut., vol. 18, no. 2,
pp. 1123-1152, Secondquarter 2016.

[2] 1. Rubin and R. Zhang, “Placement of UAVs as communication relays
aiding mobile ad hoc wireless networks,” in Proc. IEEE Mil. Commun.
Conf., Oct. 2007, pp. 1-7.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 67, NO. 11, NOVEMBER 2018

[3] P. Corke, S. Hrabar, R. Peterson, D. Rus, S. Saripalli, and G. Sukhatme,
“Autonomous deployment and repair of a sensor network using an un-
manned aerial vehicle,” in Proc. IEEE Int. Conf. Robot. Automat., 2004,
pp. 3602-3608.

[4] M. Erdelj, M. Krl, and E. Natalizio, “Wireless sensor networks

and multi-UAV systems for natural disaster management,” Comput.

Netw., vol. 124, pp. 72-86, 2017. [Online]. Available: http://www.

sciencedirect.com/science/article/pii/S1389128617302220

M. Erdelj, E. Natalizio, K. R. Chowdhury, and I. F. Akyildiz, “Help from

the sky: Leveraging UAVs for disaster management,” I[EEE Pervasive

Comput., vol. 16, no. 1, pp. 24-32, Jan. 2017.

E. Ferranti, N. Trigoni, and M. Levene, “Brick& mortar: An on-line multi-

agent exploration algorithm,” in Proc. IEEE Int. Conf. Robot. Automat.,

2007, pp. 761-767.

[7]1 N. Hazon, F. Mieli, and G. A. Kaminka, “Towards robust on-line
multi-robot coverage,” in Proc. IEEE Int. Conf. Robot. Automat., 2006,
pp. 1710-1715.

[8] J. Svennebring and S. Koenig, “Building terrain-covering ant robots:

A feasibility study,” Auton. Robots, vol. 16, no. 3, pp. 313-332,

2004.

E. Ferranti, N. Trigoni, and M. Levene, “Rapid exploration of unknown

areas through dynamic deployment of mobile and stationary sensor

nodes,” Auton. Agents Multi-Agent Syst., vol. 19, no. 2, pp. 210-243,

2009.

[10] D. Devaurs, T. Siméon, and J. Cortés, “Optimal path planning in complex
cost spaces with sampling-based algorithms,” IEEE Trans. Automat. Sci.
Eng., vol. 13, no. 2, pp. 415-424, Apr. 2016.

[11] A. Yazici, G. Kirlik, O. Parlaktuna, and A. Sipahioglu, “A dynamic
path planning approach for multirobot sensor-based coverage consider-
ing energy constraints,” I[EEE Trans. Cybern., vol. 44, pp. 305-314, Mar.
2014.

[12] N. Ahmed, S. S. Kanhere, and S. Jha, “The holes problem in wireless
sensor networks: A survey,” ACM SIGMOBILE Mobile Comput. Commun.
Rev., vol. 9, no. 2, pp. 4-18, 2005.

[13] M. Asadpour, D. Giustiniano, and K. A. Hummel, “From ground to aerial
communication: Dissecting WLAN 802.11 n for the drones,” in Proc. 8th
ACM Int. Workshop Wireless Netw. Testbeds Exp. Eval. Characterization.,
2013, pp. 25-32.

[14] J. L. Bredin, E. D. Demaine, M. Hajiaghayi, and D. Rus, “Deploy-
ing sensor networks with guaranteed capacity and fault tolerance,”
in Proc. 6th ACM Int. Symp. Mobile ad hoc Netw. Comput., 2005,
pp. 309-319.

[15] V. Isler, S. Kannan, and K. Daniilidis, “Sampling based sensor-network
deployment,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2004,
vol. 2, pp. 1780-1785.

[16] E. Yanmaz, R. Kuschnig, and C. Bettstetter, “Achieving air-ground com-
munications in 802.11 networks with three-dimensional aerial mobility,”
in Proc. IEEE INFOCOM, 2013, pp. 120-124.

[17] Z.Han, A. L. Swindlehurst, and K. J. R. Liu, “Optimization of MANET
connectivity via smart deployment/movement of unmanned air vehi-
cles,” IEEE Trans. Veh. Technol., vol. 58, no. 7, pp. 3533-3546, Sep.
2009.

[18] I. F. Senturk, K. Akkaya, and S. Yilmaz, “Relay placement for restor-
ing connectivity in partitioned wireless sensor networks under lim-
ited information,” Ad Hoc Netw., vol. 13, Part B, pp. 487-503, 2014.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S1570870513002084

[19] D. Lee, K. Jang, C. Lee, G. Iannaccone, and S. Moon, “Path stitching:
Internet-wide path and delay estimation from existing measurements,” in
Proc. IEEE INFOCOM, Mar. 2010, pp. 1-5.

[20] D. Jeong, S. Y. Park, and H. Lee, “DroneNet: Network reconstruction
through sparse connectivity probing using distributed UAVs,” in Proc.
1EEE 26th Annu. Int. Symp. Pers., Indoor, Mobile Radio Commun., Aug.
2015, pp. 1797-1802.

[21] S.-Y.Park, D. Jeong, C. S. Shin, and H. Lee, “DroneNet+: Adaptive route
recovery using path stitching of UAVs in ad-hoc networks,” in Proc. IEEE
Global. Commun. Conf., 2017.

[22] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” in Autonomous Robot Vehicles. New York, NY, USA: Springer,
1986, pp. 396—404.

[23] A. Zelinsky, R. A. Jarvis, J. Byrne, and S. Yuta, “Planning paths of com-
plete coverage of an unstructured environment by a mobile robot,” in Proc.
Int. Conf. Adv. Robot., 1993, vol. 13, pp. 533-538.

[24] S. Hert, S. Tiwari, and V. Lumelsky, “A terrain-covering algorithm for an
AUV,” Autonomous Robots, vol. 3, pp. 91-119, Jun. 1996.

[5

—_

[6

—_

[9

—

http://www.sciencedirect.com/science/article/pii/S1389128617302220
http://www.sciencedirect.com/science/article/pii/S1389128617302220
http://www.sciencedirect.com/science/article/pii/S1570870513002084
http://www.sciencedirect.com/science/article/pii/S1570870513002084

PARK et al.: DRONENETX: NETWORK RECONSTRUCTION THROUGH CONNECTIVITY PROBING AND RELAY DEPLOYMENT 11207

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

V.J. Lumelsky, S. Mukhopadhyay, and K. Sun, “Dynamic path planning
in sensor-based terrain acquisition,” IEEE Trans. Robot. Automat., vol. 6,
no. 4, pp. 462—-472, Aug. 1990.

J.-C. Latombe, Robot Motion Planning, vol. 124. Berlin, Germany:
Springer Science & Business Media, 2012.

H. Choset, “Coverage for robotics—a survey of recent results,” Ann. Math.
Artif. Intell., vol. 31, no. 1-4, pp. 113-126, 2001.

M. Arzamendia, D. Gregor, D. G. Reina, and S. L. Toral, “An evolutionary
approach to constrained path planning of an autonomous surface vehicle
for maximizing the covered area of ypacarai lake,” Soft Comput., pp. 1-12,
2017.

K. Cesare, R. Skeele, S.-H. Yoo, Y. Zhang, and G. Hollinger, “Multi-UAV
exploration with limited communication and battery,” in Proc. IEEE Int.
Conf. Robot. Automat., 2015, pp. 2230-2235.

S. K. Gan and S. Sukkarieh, “Multi-UAV target search using explicit
decentralized gradient-based negotiation,” in Proc. IEEE Int. Conf. Robot.
Automat., 2011, pp. 751-756.

T.-S. Lee, J.-S. Choi, J.-H. Lee, and B.-H. Lee, “3-d terrain covering and
map building algorithm for an auv,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst., 2009, pp. 4420-4425.

P. N. Atkar, H. Choset, A. A. Rizzi, and E. U. Acar, “Exact cellular
decomposition of closed orientable surfaces embedded in 13,” in Proc.
IEEE Int. Conf. Robot. Automat., 2001, vol. 1, pp. 699-704.

P. N. Atkar, A. Greenfield, D. C. Conner, H. Choset, and A. A. Rizzi,
“Uniform coverage of automotive surface patches,” Int. J. Robot. Res.,
vol. 24, no. 11, pp. 883-898, 2005.

M. Younis and K. Akkaya, “Strategies and techniques for node placement
in wireless sensor networks: A survey,” Ad Hoc Netw., vol. 6, no. 4,
pp. 621-655, 2008.

C.Zhu, C. Zheng, L. Shu, and G. Han, ““A survey on coverage and connec-
tivity issues in wireless sensor networks,” J. Netw. Comput. Appl., vol. 35,
no. 2, pp. 619-632, 2012.

G. Wang, G. Cao, and T. F. La Porta, “Movement-assisted sensor de-
ployment,” IEEE Trans. Mobile Comput., vol. 5, no. 6, pp. 640-652, Jun.
2006.

A. Howard, M. J. Matari¢, and G. S. Sukhatme, “Mobile sensor network
deployment using potential fields: A distributed, scalable solution to the
area coverage problem,” in Distributed Autonomous Robotic Systems 5.
New York, NY, USA: Springer, 2002, pp. 299-308.

N. Heo and P. K. Varshney, “An intelligent deployment and clustering
algorithm for a distributed mobile sensor network,” in Proc. IEEE Int.
Conf. Syst. Man Cybern., 2003, pp. 4576-4581.

A. Howard, M. J. Matari¢, and G. S. Sukhatme, “An incremental self-
deployment algorithm for mobile sensor networks,” Auton. Robots, vol. 13,
no. 2, pp. 113-126, 2002.

Z.Han, A. L. Swindlehurst, and K. R. Liu, “Smart deployment/movement
of unmanned air vehicle to improve connectivity in MANET,” in Proc.
IEEE Wireless Commun. Netw. Conf., 2006, vol. 1, pp. 252-257.

M. Mozaffari, W. Saad, M. Bennis, and M. Debbah, “Efficient deployment
of multiple unmanned aerial vehicles for optimal wireless coverage,” IEEE
Commun. Lett., vol. 20, no. 8, pp. 1647-1650, Aug. 2016.

D. Reina, H. Tawfik, and S. Toral, “Multi-subpopulation evolutionary
algorithms for coverage deployment of UAV-networks,” Ad Hoc Netw.,
vol. 68, pp. 16-32, 2018.

R. Magan-Carrién, R. A. Rodriguez-Gémez, J. Camacho, and P. Garcia-
Teodoro, “Optimal relay placement in multi-hop wireless networks,” Ad
Hoc Netw., vol. 46, pp. 23-36, 2016.

M. Gerla and J. T.-C. Tsai, “Multicluster, mobile, multimedia radio net-
work,” Wireless Netw., vol. 1, no. 3, pp. 255-265, Aug. 1995. [Online].
Available: http://dx.doi.org/10.1007/BF01200845

F. G. Nocetti, J. S. Gonzalez, and I. Stojmenovic, “Connectivity
based k-hop clustering in wireless networks,” Telecommun. Syst.,
vol. 22, no. 1, pp. 205-220, 2003. [Online]. Available: http://dx.doi.org/
10.1023/A:1023447105713

T. H. Cormen, Introduction to Algorithms. Cambridge, MA, USA: MIT
press, 2009.

R. Tarjan, “Depth-first search and linear graph algorithms,” SIAM J. Com-
put., vol. 1, no. 2, pp. 146-160, 1972.

H. Lee, A. Cerpa, and P. Levis, “Improving wireless simulation through
noise modeling,” in Proc. 6th Int. Symp. Inf. Process. Sens. Netw., Apr.
2007, pp. 21-30.

J. Kirk, “Multiple traveling salesmen problem—genetic algorithm,” 2008.
[Online]. Available: https://mathworks.com/matlabcentral/fileexchange/
19049-multiple-traveling-salesmen-problem-genetic-algorithm

So-Yeon Park received the B.S. and M.S. degrees all
in computer science from Ewha Womans University,
Seoul, South Korea, in 2016 and 2018, respectively.
Her research interests include handover decision
algorithm, network resource optimization, network
reconstruction by unmanned aerial vehicles, IoT se-
curity system, and ad hoc networks.

Christina Suyong Shin received the B.S. degree
from Ewha Womans University, Seoul, South Korea,
in 2017. She is currently working toward the M.S.
degree from Ewha Womans University. Her research
interests include wireless sensor ad hoc networks,
fog computing, and currently on vehicular ad hoc
networks.

Dahee Jeong received the B.S. and M.S. degrees in
computer science from Ewha Womans University,
Seoul, South Korea, in 2015 and 2017, respectively.
She was on intelligent security systems based on mo-
bility pattern analysis and ad hoc network reconstruc-
tion using unmanned aerial vehicles.

HyungJune Lee received the B.S. degree in electrical
engineering from Seoul National University, Seoul,
South Korea, in 2001, and the M.S. and Ph.D. degrees
in electrical engineering from Stanford University,
Stanford, CA, USA, in 2006 and 2010, respectively.
He is an Associate Professor with the Department of
Computer Science and Engineering, Ewha Womans
University, Seoul, South Korea. He was with Broad-
com as Sr. Staff Scientist for working on research and
development of 60GHz 802.11ad SoC MAC. Also, he
was with AT&T Labs as Principal Member of Tech-
nical Staff with the involvement of LTE overload estimation, LTE-WiFi inter-
working, and heterogeneous networks. His current research interests include
future wireless networks on IoT, fog computing, VANET, 60GHz Wi-Fi, and
heterogeneous networks.

http://dx.doi.org/10.1023/A:1023447105713
http://dx.doi.org/10.1023/A:1023447105713
https://mathworks.com/matlabcentral/fileexchange/19049-multiple-traveling-salesmen-problem-genetic-algorithm
https://mathworks.com/matlabcentral/fileexchange/19049-multiple-traveling-salesmen-problem-genetic-algorithm

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

