
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 64, NO. 12, DECEMBER 2015 5831

Predictive Data Delivery to Mobile Users Through
Mobility Learning in Wireless Sensor Networks

HyungJune Lee, Member, IEEE, Martin Wicke, Branislav Kusy, Member, IEEE,
Omprakash Gnawali, Member, IEEE, and Leonidas Guibas, Fellow, IEEE

Abstract—We consider applications, such as indoor navigation,
evacuation, or targeted advertising, where mobile users equipped
with a smartphone-class device require access to sensor network
data measured in their proximity. Specifically, we focus on efficient
communication protocols between static sensors and users with
changing location. Our main contribution is to predict a set of
possible future paths for each user and store data at sensor nodes
with which the user is likely to associate. We use historical data
of radio connectivity between users and static sensor nodes to
predict the future user-node associations and propose a network
optimization process, i.e., data stashing, which uses the predictions
to minimize network and energy overheads of packet transmis-
sions. We show that data stashing significantly decreases routing
cost for delivering data from stationary sensor nodes to multiple
mobile users compared with routing protocols where sensor nodes
immediately deliver data to the last known association nodes of
mobile users. We also show that the scheme provides better load
balancing, avoiding collisions and consuming energy resources
evenly throughout the network, leading to longer overall network
lifetime. Finally, we demonstrate that even limited knowledge of
the location of future users can lead to significant improvements
in routing performance.

Index Terms—Data delivery to mobile users, mobility pattern,
network optimization, sensor networks, trajectory prediction.

I. INTRODUCTION

C LASSIC multihop wireless routing protocols compute the
shortest path in terms of hops or expected number of

transmissions (ETX) [68] between sources and destinations in
a network. Energy consumption for radio transmissions corre-
sponds to a considerable portion of the total energy consump-
tion at sensor nodes [17]. Since the shortest path minimizes the
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number of necessary transmissions, this strategy minimizes not
only delay but energy used for data communication as well.

In the presence of mobility, however, the shortest path com-
puted at one point in time is not necessarily the shortest possible
path connecting the source and the sink. A shorter path might
be available if the nodes move closer to each other in the future.
An optimal routing strategy can be devised if the trajectory of
the mobile nodes is known.

In this paper, we study the problem of sending information
from sensor nodes (as data sources) in a sensor network to
multiple mobile sinks moving in the same space as the network.
Given some information about each sink’s trajectory, we aim
to minimize the expected routing cost to the sink. We assume
that the information sources and sensor network nodes are static
(not mobile). Data sinks (humans or vehicles) move inside the
area covered by the sensor network and access sensor data
through computationally capable devices, such as smartphones.
Finally, we assume that applications tolerate a packet delivery
delay in the order of the average network traversal time for
mobile nodes, e.g., a few minutes. This is often the case
in sensor networks that accumulate measurements until an
observer takes a reading [16]. Examples of such data delivery
patterns can also be found in applications that sense information
in places where people work or live and deliver it to user
mobile devices, enabling more intelligent living environments.
For instance, location-sensitive data such as store advertisement
and customized evacuation notifications [21] can be forwarded
to specific mobile users as they come around in the network.

There is a large body of prior work in the field of rou-
ting from nodes to mobile sinks. We can classify them into
two categories: 1) proactive scheme, such as optimized link
state routing (OLSR) [13] and destination-sequenced distance
vector routing [47]; and 2) reactive scheme, such as dynamic
source routing (DSR) [24] and ad hoc on-demand distance
vector routing (AODV) [46]. The state-of-the-art ad-hoc routing
protocols can discover routes without initially knowing the
topology of the networks, and this aspect is considered a big
advantage of these protocols over traditional routing protocols
such as Open Shortest Path First [14] and Routing Information
Protocol [39]. However, the problem is that their routing perfor-
mance degrades rapidly with increasing mobility, i.e., resulting
in higher route update cost for proactive schemes or higher
bandwidth usage of on-demand flooding for reactive schemes,
as investigated in [53].

To design a robust routing algorithm under sinks’ mobility,
exploiting some trajectory information of the mobile nodes
may be necessary. In some applications, sinks know their
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Fig. 1. Overview of our routing algorithm using the anticipated association
nodes. The red node is the predicted next association node (through short-term
prediction [28]), and the blue nodes are sequences of the future association
nodes (through long-term prediction). Packets can be stashed for pickup at blue
nodes.

future trajectory through the network and can announce it to
the network when requesting information. Even if the future
trajectory is unknown, since many applications are deployed
in environments that constrain motion patterns of sinks to
roads, trails, or hallways, not all possible movements within
space are actually realized. Moreover, a recent study [56] has
showed that mobile users move along a limited set of typical
spatial trajectories, and the movement shows a certain degree of
regularity. This suggests that we can learn the structure in users’
movements, which is called the mobility pattern from repeated
observations, and exploit the mobility pattern for designing
a more reliable and efficient routing scheme that works even
under high mobility.

We present a long-term mobility prediction algorithm that
allows us to predict a sequence of node associations of mobile
sinks, as shown in Fig. 1. To do this, we present a method
for representing trajectories with wireless association, learning
typical trajectories from observations, and predicting likely
association patterns given observed partial association history.
We borrowed ideas of sequence similarity, clustering, and ali-
gnment from computational biology. Wireless devices carried
by mobile sinks run the prediction algorithm to compute and
supply information about their future association sequences
to the network. We define trajectory as a sequence of node
associations and compute similarities between sequences in
the association data acquired in a learning phase. Using these
similarities, we compute clusters representing typical paths
through the network. We then compute a compact probabilistic
representation for the clusters that we can use to efficiently find
likely future trajectories during prediction.

Based on the long-term mobility prediction algorithm des-
cribed earlier, we design a routing scheme that exploits know-
ledge about the long-term association pattern of mobile sinks
within a network of data sources. It aims to minimize energy
consumption and network congestion. This enables the routing
scheme to scale to multiple mobile sinks and a large number
of data sources. For delay-tolerant network applications, which
do not require immediate real-time data retrieval, we propose
to route data not to the mobile sink directly, but to relay nodes
along a predicted path of the mobile node that is close to the
data source in terms of communication hops (see Fig. 1). The

selected relay node will stash the information to be picked up
when the mobile node passes within the transmission range of
the relay node. We use an integer programming technique to
find optimal relay nodes that minimize the number of necessary
transmissions while guaranteeing robustness against link and
node failures and achieving better load balancing and more even
utilization of network resources.

Our main contributions can be summarized as follows.

• We present data stashing, which is a data delivery scheme
that routes data to mobile sinks. In this scheme, each
sensor node selects a set of nodes on which its data will
be stashed, so that the overall network and energy costs of
delivering data to one or more users are minimized.

• We introduce a network-centric representation for trajec-
tories. In this representation, a trajectory is represented
as a sequence of associated nodes, giving us all the
information we need for data delivery, while abstracting
from unnecessary and possibly misleading spatial infor-
mation. We also develop useful similarity measures for
this motion representation, which allows us to perform
clustering.

• We propose a probabilistic representation for sets of
similar (but potentially partial) trajectories. This repre-
sentation can be used to compactly describe a cluster
of trajectories and to efficiently find the best-matching
cluster given a partial trajectory.

This paper extends our prior work presented in [32] as
follows.

• We present a new optimization formulation that allows
our algorithm to trade off routing efficiency for improved
data latency.

• We validate our proposed data stashing scheme in a
real-world test bed where 41 TelosB sensor nodes are
deployed, showing practical applicability.

• We perform qualitative and quantitative analyses on the
effects of packet delivery delay and energy saving in terms
of network routing performance in a large-scale simulated
network.

• We add experimental results to show the geographical
load balancing in packet transmission over the network.

• We add experimental results to investigate the geogra-
phical location of the selected stashing nodes over the
network.

• We add discussions on the applicability of the technique
in different types of networks, and the possibility of cross-
layer integration with the media access control (MAC)
layer.

The remainder of this paper is organized as follows. After
discussing related work in Section II, we present our long-term
mobility prediction algorithm in Section III. In Section IV, we
propose our predictive data delivery schemes, and Section V
presents the evaluation results of our proposed approach. After
we add discussions in various aspects in Section VI, we con-
clude this paper in Section VII.
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II. RELATED WORK

Related work can be classified into two categories: mobility
prediction and routing to mobile users.

A. Long-Term Mobility Prediction

Long-term mobility pattern modeling has been studied using
GPS data or association data from cellular networks or wireless
local area networks (WLANs). Because raw GPS data contain
many outliers, most of the previous research [5], [27] filters out
noisy and unreasonable measurements first. They then identify
the possible goal locations from the filtered GPS positions and
construct prediction models. Alvarez-Garcia et al. [5] found
places where a user spent a significant amount of time and
clustered them into locations. A hidden Markov model was
applied to movement between locations, which is then used
to predict future locations. Krumm et al. [27] obtained end-
to-end routes from raw GPS data and used a Bayesian model
and a trip similarity clustering algorithm to predict the next
location. Further, Lane et al. [29], and Lee et al. [33] not
only extracted significant places from filtered GPS data but
also tried to infer human activity associated with each different
place. In [29], a user-specific activity classification model was
constructed by embedding interperson similarity in various
aspects of similarity networks. Moreover, in [33], a Bayesian
network model for activity using context hierarchy based on
contextual information from a mobile phone was presented.
Their work suggest exploiting a high-level context (i.e., users’
activities) of a mobile user with higher fidelity.

These previous approaches, including [43], infer long-term
destinations of mobile users. Recently, in [42], a path prediction
model has been proposed based on historical movement trace
maps. This paper provides not only the destination prediction
but can also predict all possible future trajectories of the user.
Furthermore, our techniques rely only on wireless association
traces, allowing more generic applicability of mobile users’
movement.

Similarly, in cellular networks, some previous work [7], [23]
predicts the next cell connection based on various information
such as past handoff rate, size of the active set, active set
update rate, and signal strength variation. In WLANs, a theo-
retical work [3] constructs a Gauss–Markov mobility model for
predicting the speed, direction, and degree of randomness of
mobile users. Further, based on real-world empirical traces, a
long-term large-scale measurement study of user access point
(AP) association at Dartmouth [26] has inspired work in mobi-
lity prediction. It has been noted that wireless users’ locations
can be predicted with up to 72% accuracy using an order-two
Markov predictor [58] for users with long trace lengths. Further
analysis of the same data set has suggested the feasibility of
predicting the future associations of a mobile user in space
and time [57], and a similar study [60] has been conducted
for seamless handoffs in WLANs. Using a different data set,
Ghosh et al. [18] described techniques to predict a user’s
location with respect to social hubs such as buildings and
classrooms, rather than individual wireless APs. Although the
approaches work with real-world mobility data and use only

association data for predicting the future association, they do
not explicitly deal with noisy association for classifying mobi-
lity pattern clusters. This paper offers an explicit mechanism for
classifying user mobility patterns into different representative
clusters, even if the wireless association trajectories are noisy.

More recent work has exploited user context information to
distribute resources more efficiently across the network and as
a basis for energy-efficient design of network applications [2],
[21], [52]. Similarly, our work exploits users’ mobility patterns
from wireless traces, and our network optimization utilizes the
predictive knowledge to improve energy efficiency of routing.

B. Routing to Mobile Users

There is a large body of research in routing protocols desi-
gned to deliver packets to mobile users in wireless networks.
Some of these protocols assume little about the network and
the mobility pattern of the mobile users and perform network
discovery proactively or on demand. Classic protocols such as
DSR [24] and AODV [46], which were originally designed
for wireless ad hoc networks, and sometimes used in mobile
ad hoc routing, fall into this category. In the wireless sensor
network context, protocols such as directed diffusion [22],
scalable energy-efficient asynchronous dissemination protocol
[25], and two-tier data dissemination [65] construct energy-
efficient routing paths without knowledge of the mobility pat-
terns of the sink.

In particular, regarding routing to mobile sinks, mobile tra-
jectories, or their sojourn times can be programmed to optimize
data forwarding efficiency in [4], [38], [54], and [69]. This
paper does not assume a programmable trajectory of the mobile
sinks. Researchers have formulated computing energy-efficient
routes in sensor networks as an optimization problem in [45],
[62], and [63]. This paper also frames routing as an optimi-
zation problem. However, in our optimization formulation, a
number of stashing nodes or the sinks themselves can be feasi-
ble destinations, while also taking into account link reliability
and the probabilistic nature of the predicted trajectories of the
mobile sinks.

There has been previous work on exploiting predicted mo-
bility to improve the efficiency of routing to mobile users with
predictable trajectories. Chatzigiannakis et al. [11] demonstra-
ted an important claim that data collection should be adap-
ted depending on characteristic mobility patterns for reducing
energy consumption in routing. Chakrabarti et al. [10] proposed
a protocol in which the mesh nodes keep statistics of user visits
and transmit information only when the mobile user is within
transmission range. This paper does not assume that the trajec-
tory of a mobile node takes it within a single-hop transmission
range of each mesh node in the network. Most closely related
to this paper is the recent work on the proactive scheme in
[61] and [67]. Based on the user arrival statistics, a subset of
nodes elect themselves as storage nodes and initiate routing tree
construction as roots. The mesh network forwards data to these
storage nodes so that packets can be relayed to the mobile user.
Although our work fits in this general framework, we employ
different methods to overcome shortcomings of this approach.
Our protocol is based on a clustering algorithm to improve the
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accuracy of trajectory prediction (as described in Section III)
and uses the predictive knowledge to help an efficient routing
decision, which is scalable for many mobile sinks in terms of
radio energy consumption and packet delivery reliability.

III. LONG-TERM MOBILITY PREDICTION

We predict likely long-term association nodes of mobile
sinks by using the current association and a past history of as-
sociation trajectories. We present a method for learning typical
movement patterns from observations, representing trajectories
and predicting likely trajectories, given observed partial trajec-
tories. The prediction algorithm is used by the mobile node
to compute and supply information about its future trajectory
to the network. We characterize the trajectories as sequences
of node associations and find clusters representing typical
trajectories. Using multiple sequence alignment techniques to
identify similar and dissimilar regions within a cluster, we then
compute a compact probabilistic representation for the clusters
that we use to efficiently determine likely future trajectories
during prediction.

The predicted long-term trajectory of mobile sinks can
benefit network applications; this is particularly obvious in
efficient data delivery to mobile sinks. For example, when an
information source needs to deliver data to multiple mobile
sinks, it can select intermediate storage nodes that are close
to the source in terms of communication hops and lie along
the anticipated trajectory of the sinks. Stashing the data at
the selected nodes, instead of routing the data directly to the
sinks at their current positions, allows a mobile sink passing
through the network to collect the data at intermediate storage
nodes. We can further reduce redundant packet transmissions
by sharing data deliveries via intermediate storage relays on
nodes contained in several sinks’ trajectories. The long-term
connectivity prediction thus enables a scalable data delivery
scheme for multiple mobile sinks.

A. Constructing the Mobility Model

We introduce a trajectory in terms of wireless association
and present our mobile trajectory clustering method using given
trajectories for an offline learning phase.

In most scenarios, mobile sinks travel along a fairly limited
set of trajectories. Oftentimes, this is due to obstacles present
in the environment: Buildings, bridges, roads, and walkways
constrain the possible trajectories. Even with no environmental
restrictions, there are usually few interesting start and end
points for any given journey, and sinks often follow short(or
the shortest) paths from a starting point to a destination, greatly
limiting the set of possible trajectories.

It therefore makes sense to find and exploit the structure
that is present in the likely trajectories through a network. We
will do so by clustering similar trajectories, thus creating a
database of historical trajectories, arranged in clusters of similar
trajectories in the offline learning phase. To perform practical
clustering on trajectories, we require a trajectory representation,
a similarity measure, and a compact representation of a cluster
of sequences. The following describes these concepts in turn.

1) Trajectory Representation: In the following, we will re-
present a single trajectory through the network not in terms of
spatial position but in terms of the associated sensor node at any
given time.

Let us consider a mobile sink moving through the network on
a given spatial path. Sending periodic beacons and listening for
replies, the mobile node can record the nodes in the radio range
at each beacon time. In each of these sets, we can determine
the association node, e.g., by measuring signal strength on the
acknowledgment or the beacon packet. This is the node with
which the mobile node would associate to send or receive data.
We represent trajectories through the network as a sequence of
association nodes, i.e.,

T = N1N2N3, . . . , Nk.

We only record changes in the associated node list, i.e., Ni �=
Ni+1. For example, given “s s a a a r r r a n n g h h h h
a a e e e e y y o o,” the corresponding trajectory is
represented as T = s a r a n g h a e y o.

Note that, due to imperfect links and radio signal strength
fluctuations in dynamic environments, two node sequences
recorded from the same spatial path are not necessarily identical
or even of the same length. To compensate for noisy fluctuations
in capturing similar trajectory patterns, we borrow a simila-
rity measure from computational biology where functional,
structural, or evolutionary relationships between sequences en-
coding biological macromolecules have been thoroughly inves-
tigated. Moreover, note that trajectory data can be collected
anonymously; the corresponding mobile sink ID is not needed,
which helps to mitigate possible privacy concerns.

2) Similarity Measure: We use a variant of the longest
common subsequence metric known from string theory and a
variant of the Smith–Waterman algorithm [55] to calculate this
similarity measure between two sequences.

Informally, to compute the similarity between two sequences
TA = A1, . . . , AnA

and TB = B1, . . . , BnB
, we count how

many nodes we have to insert, delete, or substitute in TA to
obtain TB .

We define the partial match function FAB(i, j), which com-
putes the similarity between the prefixes of lengths i and j of
TA and TB, A1, . . . , Ai and B1, . . . , Bj . FAB can be defined
recursively as follows:

FAB(i, 0) = 0 for 0 ≤ i ≤ nA (1)
FAB(0, j) = 0 for 0 ≤ j ≤ nB (2)
FAB(i, j) = max [FAB(i− 1, j − 1) + s(Ai, Bj),

FAB(i− 1, j) + d, FAB(i, j − 1) + d, 0]
(3)

where the similarity for insertion or deletion operations d and
the similarity function on individual nodes are free parame-
ters. In our experiments, we use d = 0, meaning we see no
similarity in deletion or insertion operations. We define a per-
node similarity function s(Ai, Bj) where we set s(A,A) = 1
and s(A,B) = 0 ∀A �= B, meaning that we penalize for a
different node in substitute operations. With these parameters,
FAB(nA, nB) is the length of the longest common subsequence
in the two sequences.
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We often need to compare several partial trajectories A to a
significantly longer complete trajectory B. As defined earlier,
FAB(nA, nB) will be lower the shorter A is, even if (in the
matching part of B) there is a perfect match. To compensate for
differences in the length of A or B, we normalize the similarity
measure by dividing by the length of the shorter sequence

sim(A,B) =
FAB(nA, nB)

min(nA, nB)
. (4)

Note that the similarity measure we define is not a distance
metric.

3) Cluster Representation: Based on the pairwise simila-
rities between all pairs of sequences, we apply a hierarchical
clustering method. We use the average linkage metric that
uses the average similarity between objects in two clusters to
determine whether clusters are merged. For a more detailed
description of the hierarchical clustering method, see [41].

Each cluster consists of a number of similar sequences. Du-
ring the prediction stage of our algorithm, we will be presented
with a partial trajectory T and asked to find the most likely
cluster for this trajectory. Although it would be possible to
compute average linkage for T and each cluster, this would
entail computing the similarity between T and each trajectory
in the database. To avoid limiting the size of our database, we
instead propose a probabilistic representation for each cluster,
so that we can efficiently query for the best matching cluster.

We create a representation for our clusters in two steps: For
each cluster, we first align all its sequences and then create a
probabilistic summary of the aligned sequences.

a) Multiple sequence alignment: Given a set of se-
quences, multiple sequence alignment algorithms compute how
the sequences should be lined up to maximize overlap. Our
algorithm for computing the similarity between two sequences
essentially computes a sequence alignment for these two se-
quences. In the general case, however, multiple sequence
alignment is an NP-hard problem [64]. Heuristic alignment
methods are widely used for DNA or protein alignments in
bioinformatics [35]. We use a modified version of ClustalW,
which is one of the most popular alignment tools [59].

The ClustalW algorithm starts by aligning the most similar
sequences and progressively adds more distant sequences one
by one. This iterative procedure yields a good alignment of
all sequences. We modify ClustalW to use the set of node IDs
instead of an alphabet of amino acids or DNA base pairs. We
also use an unweighted substitution matrix, making each substi-
tution equally likely. The computation complexity of ClustalW
algorithm is O(N2L2), where N is the number of sequences,
and L is the sequence length [36]. To construct a cluster profile
database, the aligned trajectory sequences need to be stored
with storage cost O(NL).

The output of the algorithm is aligned sequences that have
the same length. Gaps in the aligned sequences are marked with
a special gap symbol (see Fig. 2). We compute a probabilistic
representation from these aligned sequences within a cluster.

b) Probabilistic cluster representation: Given the set
of aligned sequences of length n, we construct a probabili-
stic representation for the cluster, which we call the cluster

Fig. 2. Clustering and alignment procedures. A number of trajectories are
clustered together with respect to sequence patterns and are aligned by using
a multiple sequence alignment algorithm (ClustalW). The aligned sequences
form a probabilistic trajectory profile.

profile. A profile is a sequence of probability distributions
P = P1, . . . , Pn. At each position i, the probability distribution
Pi(A) denotes the probability that node A appears in position
i. This representation can also be considered a zeroth-order
Markov model of the set of aligned sequences.

The cluster profiles allow us to efficiently find the most
likely cluster, given a partial test sequence. See Fig. 2 for an
illustration of clustering and alignment for profile generation
and Fig. 3 for a profile example of sequences after clustering.
Sequences classified in a cluster [see Fig. 3(a)] are aligned to
one another through the ClustalW algorithm as in Fig. 3(b).
Given a group of these aligned sequences for each cluster, we
calculate the probability distribution over each column index. In
this way, we obtain a probabilistic trajectory profile for a cluster
and continue this procedure for the other clusters.

For illustration purposes, we generate a graphical representa-
tion of probabilistic trajectory profiles [see Fig. 3(c)] by using
WebLogo [15]. The figure graphically represents all possible
realizations of sequences within a mobile trajectory cluster.
The height of the letters within each stack indicates the rela-
tive frequencies for each possibility, whereas the width of the
stacks indicates the relative proportion of valid readings at that
position where the more gaps (i.e., spaces to compensate for
insertions and deletions) in the sequence at a specific position
means a thinner stack.

B. Connectivity Prediction

Here, we describe a long-term connectivity prediction algo-
rithm. The prediction algorithm provides a set of possible future
trajectory nodes using the mobile trajectory clusters constructed
in Section III-A.

If the future trajectory of a mobile sink is unknown, our
system tries to predict its behavior by comparing it to histo-
rical data. We will demonstrate that even limited information
about the future relay nodes can significantly improve routing
performance in terms of transmission cost and load balancing
in Section V.
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Fig. 3. Sequences belonging to a cluster, the aligned sequences, and their
graphical profile generated by WebLogo [15]. (a) Sequences in a cluster.
(b) Sequences after alignment. (c) Profile presentation from the aligned se-
quences in a cluster.

Specifically, we are given a partial trajectory TM =
N1, . . . , NnM

recorded after the mobile sink enters the net-
work. We would like to compute a set of trajectories through
the network that are likely continuations of the recorded partial
trajectory. In our experiments, we compute the cluster that TM

most likely belongs to and use all elements in that cluster as our
set of likely trajectories. For each of the returned sequences,
we have to find the most likely position of the last node of
our partial trajectory TM so that we can avoid pushing data to
nodes that have already been visited by the mobile node. In
the following, we describe how we compute the closest cluster
(see Section III-B1) and how we compute the current position
of the mobile node within the returned set of sequences (see
Section III-B2).

1) Cluster Matching: Computing the similarity between a
trajectory and a probabilistic trajectory profile is very similar
to computing the similarity between two trajectories. In fact,
the recursive definition (2) can be used unaltered, except that
the partial match function FTP now operates on a trajectory
T = N1, . . . , NnT

and a profile P = P1, . . . , PnP
. We need

to change the definition of the per-node similarity function
s(Ni, Pj) (instead of using s(Ai, Bj)) to reflect the likelihood
of Ni given the probability distribution Pj . We choose

s(Ni, Pj) =

{
ePj(Ni), Pj(Ni) > 0

h, otherwise
(5)

and use the parameter values d = −1 in (2), e = 8, and h = −1,
which have been proven effective in our setting. By varying
each parameter, we choose a set of parameters that leads
to the most accurate cluster prediction for our datasets (see
Section V). For instance, denser deployments incur higher

Fig. 4. Sequence alignment of a partial trajectory with a cluster profile.

variability of relay nodes; thus, the parameters need to allow
for additional mismatches and insertions/deletion.

2) Alignment: Once we have found the best-matching clus-
ter, we need to align the partial trajectory with the sequences in
the cluster to find the part of the trajectories that will be visited
by the mobile node. All sequences in the cluster are aligned to
each other and the cluster profile using multiple sequence align-
ment as described in Section III-A3. It is therefore sufficient to
find an alignment of the partial trajectory T to the profile P . In
particular, we are interested in the position J to which the last
node in the partial trajectory NnT

is matched in the profile P .
Note that the Smith–Waterman algorithm implicitly aligns

two sequences to compute their similarity. We can make this
alignment explicit: After we compute FTP (i, j), the best-
matching position of the last node in T , NnT

, is given by
J = argmaxj FTP (nT , j).

If the matched cluster contains the set of expanded trajecto-
ries {T1, . . . , Tk}, all of which have been aligned to be of length
n, as described in Section III-A3, then the set of trajectories
that needs to be considered by the data stashing optimization is
{T1[J, n], . . . , Tk[J, n]}. See Fig. 4 for an illustration.

IV. PREDICTIVE DATA DELIVERY

The main objective of this paper is to develop a routing
scheme that delivers data to mobile sinks through a sensor net-
work. We exploit knowledge about the mobility of the sinks to
lower the cost and increase the reliability of data transmission.

In particular, we solve the following problem: One (or
several) mobile sink moves through a network, collecting local
data from the nodes in the network. Traditionally, we would
either send all data directly to the current position of the mobile
sink (i.e., to a node that is close to the mobile sink, which will
relay the information to the mobile sink), or not send any data
at all, and wait for the mobile sink to collect the data as it passes
each of the sensor nodes. The latter option is often infeasible if
we cannot control the movement of the mobile sink or if moving
within the radio range of each desired node is not an option.
We choose a compromise between the two extremes. Using
knowledge about the trajectory of the mobile sink, data sources
route data to a set of stashing nodes that store information along
the likely trajectories of the mobile sink.

At the core of our method is an optimization procedure
that chooses for each sensor node a set of stashing nodes
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Fig. 5. Our optimization procedure chooses a set of nodes that covers all
possible future trajectories (blue dashed line) of mobile sinks but, at the same
time, is as cheap to route to as possible.

that guarantee (with high probability) that a mobile sink will
receive data from the source (see Fig. 5 for an illustration). The
optimization procedure is described in detail in Section IV-B.

We assume some knowledge about the possible trajectories
that a mobile sink can take. This information is either provided
by the mobile sink or is deduced from motion patterns of sinks
in the network, as shown in Section III.

Our evaluation in Section V shows that exploiting knowledge
of sinks’ motion can greatly decrease transmission costs and
energy use. However, we do require stationary sensor nodes to
have some storage capacity for stashing data, and we assume
that the data delivered to the mobile sink is delay tolerant. The
sink will collect the data throughout her journey through the
network, possibly introducing some delay in data availability to
the sink.

A. Protocol

Here, we clarify the overall procedure of trajectory predic-
tion, stashing node selection, and routing. We provide a high-
level description of the protocol used to negotiate data stashing
for a mobile sink, as shown in Fig. 6. The protocol assumes that
a mobile sink enters the network and requests data from a set of
sensor nodes.

1) Trajectory prediction. When a mobile sink joins the
network, it beacons in regular intervals. Sensor nodes
in range reply with their IDs, and the sink selects the
node whose reply was received with the strongest signal
as its relay node for proxy. As the sink moves through
the network, we can observe a sequence of relay node
IDs. We use this sequence to predict a set of likely
trajectories that most closely match the recorded prefix
in the database of historical trajectories acquired in an
offline learning phase, as described in Section III-B.

If the trajectory or set of likely trajectories is known, this
step can be skipped.

2) Data request and trajectory announcement. The mobile
sink announces the set of likely trajectories to the net-
work. The set of trajectories is encoded and broadcast
to the whole network. This message can also contain
a set of sensor nodes whose data are interesting to the
mobile sink.

3) Stashing node selection. Upon receiving a sink’s request
for data and a set of likely trajectories, each sensor node
(which is a data source) computes a set of stashing nodes
that cover the likely trajectories and minimize the routing
cost required to send the data to the stashing nodes. The
optimization procedure is described in Section IV-B.

4) Data stashing. Sensor nodes forward data to the stashing
nodes for future delivery to mobile sinks.

5) Data collection. As the mobile sink moves through the
network, it regularly beacons to announce its position. If
a stashing node receives a beacon, it starts transmitting
the data stashed at this node to the mobile sink.

This protocol is easily extensible to multiple mobile sinks.
We disambiguate between the sinks based on their unique IDs
and discuss scenarios with multiple mobile sinks in Section V.

Note that we assume an underlying point-to-point routing
protocol such as S4 [40]; however, we make no assumptions
on the properties of this protocol.

B. Network Optimization

Contrary to traditional routing schemes, data delivery by
stashing does not route to the current position or, in fact, to any
single future position of a mobile node. Instead, we route to all
possible trajectories of one or several mobile nodes. To this end,
we choose a set of nodes that covers all trajectories but, at the
same time, is as cheap to route to as possible.

We formulate the problem of data delivery from a data source
to stashing nodes along a set of trajectories as a linear pro-
gramming relaxation of a binary integer program. The proposed
scheme finds, for each data source, the optimal stashing nodes
to which to send the data. Each data source can compute the
solution to its particular routing problem independent of the
other nodes. In the following, we will assume that a node A
is asked to route data to one or several mobile nodes that travel
along a set of possible trajectories {T1, . . . , Tm}. The output of
the optimization is a set of stashing nodes R = {R1, . . . , Rk}.

To set up our integer program, let us first define an indicator
function I(N), indicating whether our data source has chosen
N to be part of its set of stashing nodes, i.e.,

I(N) =

{
1, N ∈ R

0, otherwise.
(6)

Based on this definition, we can write the objective function
to minimize as

f =
∑
N

I(N)C(A,N) (7)
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Fig. 6. Overall procedure of our proposed routing protocol of trajectory prediction (by mobile sink), stashing node selection (by data source sensor), and routing.

where C(·, ·) denotes the routing cost between two nodes. In
our experiments, we use the ETX on a link as the routing cost
for that hop, and the cost for a path is the sum of the per-hop
costs.

To make sure that the data can be retrieved by the mo-
bile sinks, there must be at least one stashing node on each
of the trajectories. Given the trajectories Ti = Bi

1, . . . , B
i
ni

,
we can write this condition as a single linear constraint per
trajectory Ti ∑

0<j≤ni

I(Bi
j) ≥ 1. (8)

Using these definitions, our problem is to find a set R that
minimizes (7) subject to the constraints (8). This problem can
be solved by a linear program (LP) if we ignore the integrality
constraints. In our case, since the variable I(N) is either zero
or one, we are dealing with the special case of binary integer
programming, which we solve using the bintprog optimization
toolbox in MATLAB and AMPL/Gurobi.

C. Optimization to Improve Data Latency

We present an extended optimization problem of selecting
stashing nodes, considering how long it will take for a mobile
node to pick up the data at the stashing nodes. A certain
class of applications may require time-sensitive packet delivery
to mobile users. To take into account the factor of how far
the selected stashing nodes are located currently from mobile
nodes in the predicted trajectory, we apply the regularization
technique [8] by a factor ofα. We aim to minimize the weighted
sum of the objective functions: 1) the total routing cost from
data sources to the selected stashing nodes and 2) the average
trajectory distance from mobile nodes to the selected stashing
nodes.

We set up a weighted version of an integer program as
follows:

f ′ =
∑
N

I(N) ·
[
C(A,N) + α

∑V
i=1 dist(Mi, N)

V

]
(9)

where V is the number of mobile nodes, and dist(Mi, N) is the
sequence distance between the mobile nodeMi and the stashing
node N in the predicted trajectory of Mi.

We find a set of stashing nodes that minimizes the weighted
sum of the objective functions (9), while satisfying the same
constraints of guaranteeing data delivery on each predicted
trajectory, as in (8).

V. EVALUATION

We conduct experiments with real-world wireless traces to
validate our trajectory clustering algorithm (see Section V-A).
We evaluate our data delivery scheme in a real-world test
bed (see Section V-B) and a larger network simulation (see
Section V-C) by comparing our technique against direct routing
that immediately delivers data directly to mobile sinks in terms
of routing efficiency and robustness.

We evaluate routing in terms of routing cost, energy saving,
packet delivery, and load balance metrics and compare our
optimization scheme (Stash) to two other protocols: a point-to-
point proactive distance-vector routing protocol (Direct) based
on [47] where each static sensor node delivers its data to the
currently connected static relay node of each mobile sink,
and the idealized stashing scheme that is given the perfect
set of future locations for all sinks (Stash(opt)). We note that
all three protocols that we evaluate use the same underlying
point-to-point routing protocols, whereas more advanced rou-
ting protocols (such as in [12], [13], [40], and [44]) can be
integrated with our data stashing algorithm; the evaluation of
data stashing benefits for different static protocols is outside the
scope of this paper. The Direct protocol compares performance
of our optimization scheme to traditional data delivery methods.
The Stash(opt) scheme serves as an upper bound on what our
algorithm could achieve, given perfect prediction. Note that this
is not only a theoretical bound; it is achieved if the trajectories
of nodes are known in advance, e.g., because the mobile sink
announces them.

When we evaluate the routing cost, we count how many
packets were used to deliver data from sensor nodes to desti-
nation nodes after the sensors learn the identity of the correct
relay or possible relay candidates. In the evaluation of test-bed
experiments (see Fig. 9) and larger network simulations (see
Figs. 11 and 12), we demonstrate that, even without considering
the control cost, our Stash scheme requires far fewer data
packets than the Direct scheme. We also compare energy ef-
ficiency of Direct and Stash schemes. It has been observed that
energy consumption for one-off computation tasks in sensor
networks is typically dominated by the energy consumed for
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Fig. 7. Typical trajectories of moving buses in UMass from the DieselNet data set. When a bus is associated with a nearby AP, the AP is shown with a marker.

radio transmissions [31], [51]. We thus focus on evaluating
energy efficiency in terms of routing cost in our evaluation.

In our experiments, we measure whether packets arrive at
the stashing node (or in the direct routing case, at the current
relay node), we do not take into account packet loss on the
last hop, from the stashing or relay node to the mobile node.
Since this affects Stash and Direct equally, it does not change
the comparative analysis; however, it might lower the overall
reliability of both methods. Consequently, we only count a
packet as delivered if it is stashed at a node that is visited by
the mobile node, i.e., if the stashing node is the associated node
to the mobile node at any point in time. In reality, even if the
stashing node is never selected as the associated node, it might
still be within range. While this would slightly increase the
reliability of data stashing, we do not believe it would change
the qualitative results. We show that benefits of our technique
are better load balancing and more even utilization of network
resources, such as energy.

Regarding the load balance metric, we measure the number
of packets sent by each node and show it in a potential plot and
in a cumulative distribution function.

A. Clustering and Trajectory Prediction

First, we validate our probabilistic trajectory model used for
prediction using real-world mobility data traces from UMass
DieselNet [6] (shown in Fig. 7). The traces consist of time series
of wireless AP IDs that wireless cards installed in buses connect
to. There are 34 buses, 4198 APs, and 789 bus trips in the data
set, covering an area in and around the UMass campus. We
evaluate how reliably the selected stashing nodes can connect
to mobile sinks. Note that we did not use any bus identification
information but used only wireless association list of each bus
trip as the input of our trajectory model.

We tested the hierarchical clustering algorithm described in
Section III-A. The algorithm ended up with clustering the set
of 789 bus trips into 23 clusters. Although we have no ground

truth to compare these clusters against, we visually evaluated
the clusters and found them to be of good quality.

We use the clusters we found in the DieselNet traces to
predict likely trajectories for a partial trajectory (which was
not part of the training data). Since there is no network data
available, we assume that nodes are connected by perfect links
and that routing cost between two nodes is proportional to the
Euclidean distance between them. While these idealized ass-
umptions do not allow us to draw conclusions about network-
related quality metrics, they help us evaluate the quality of our
prediction algorithm in the context of data stashing.

Using the predicted trajectories and the cost metric described
earlier, we select stashing nodes for ten randomly chosen data
sources in the network and measure what percentage of packets
the mobile sink is able to retrieve. As Fig. 8 shows, if we
base our predictions on a very short historical trajectory, the
prediction quality suffers (underfitting problem). For accurate
prediction, we need longer series of past movement patterns
that will allow us to identify future paths. On the other hand, if
the historical trajectory is too long, this constrains the possible
future user locations to a small set as few historical trajectories
in the training set fit the current data. The error of prediction
then increases as a result of overfitting. The results show that
our prediction method performs well in real-world scenarios for
L between 10 and 30.

B. Small-Scale Real-World Network Experiment

We evaluate our algorithms in a real test bed deployed in
Clark Center at Stanford University, as in Fig. 9. We used
TinyOS 2.1 [1] and configured 41 stationary TelosB sensor
nodes [49] to form a sensor network in an 65 × 100 m2 area.
We set transmission power to 0 dBm that resulted in the radio
range of approximately 20–30 m. We asked users to carry a
TelosB node in the network along ten different moving paths,
as shown Fig. 9. The users moved at a speed of approximately
1.4 m/s, and the mobile node exchanged packets with stationary
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Fig. 8. Fraction of packets stashed on nodes that are actually visited by the
mobile node, depending on number of nodes L used for prediction in the
DieselNet dataset.

Fig. 9. Forty one stationary sensors (marked with red circle) distributed over
65 × 100 m2 and moving paths of mobile sinks in the Clark building at St-
anford University. Ten different moving paths, including the opposite direction,
are explored while a mobile sink carries a sensor device and communicates with
the networks.

nodes at a rate of 1 Hz. The node that replies back to the
mobile node with the highest signal strength is considered the
association node at every beacon time. In these experiments, all
of sensor nodes send data to mobile sinks. It should be noted
that each unique moving path is highly overlapped with others
in part, and the resulting association nodes are dynamically
varying, even with the exact same moving path due to the real
wireless vagaries. Any mobile node identification or trajectory
information other than associated node IDs is not used. Hence,
this experiment setup makes the future trajectory prediction
neither obvious nor trivial. For evaluation results, the number
of nodes for prediction L = 10 is used.

We examine how the number of mobile sinks affects the
performance of these algorithms in terms of routing cost, packet
delivery reliability, and storage overhead. As the number of
mobile sinks increases, routing cost of the Direct scheme is
proportional to the number of the sinks, whereas stashing
algorithms are affected much less because they exploit overlaps
in the different trajectories [see Fig. 10(a)]. In terms of packet

Fig. 10. Routing cost, delivery reliability, and storage cost, depending on the
number of mobile sinks in Clark test bed. (a) Routing cost. (b) Reliability. Mean
and error bars of standard deviation are shown. (c) Fraction of nodes storing less
than a certain number of packets.
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delivery, our stashing algorithm achieves high reliability above
95%, whereas the Direct scheme suffers due to independent
packet delivery directly to each mobile sink while traveling over
a larger number of hops [see Fig. 10(b)]. Regarding storage
overhead, our Stash scheme requires only 10% of sensor nodes
to store ten or more packets [see Fig. 10(c)].

C. Large-Scale Network Simulation Experiment

We also test the algorithms in a larger simulated network of
downtown San Francisco. The network consists of 716 sensor
nodes in an 830 × 790 m2 area (see Fig. 11). We generated
20 different trajectories, a subset of which we show in Fig. 12.
Each vehicle moves at a random speed of N (30, 52) km/h and
broadcasts beacons at 1 Hz. To derive radio signal strengths
for transmitted packets, we use a combined path-loss and
shadowing model with a path-loss exponent of 3, a reference
loss of 46.67 dB, and an additive Gaussian noise of N (0, 52)
in decibels. These parameters have been derived from measu-
rements in urban environments [20]. We model interference
effects using the closest-fit pattern matching model [30] in
TinyOS 2.1 [1] with meyer-light noise traces.

We implemented our routing algorithm in the TinyOS TOS-
SIM simulator [34] using idealized static shortest-path routing.
In our scenario, it is often the case that we route several packets
along similar paths. We use multicast to reduce redundant
packet transmissions. We ran all of the experiments ten times
and draw mean values with standard deviation error bars whe-
never applicable.

Our evaluation shows that Stash has lower control overhead
than Direct. Both Stash and Direct require flooding that rea-
ches the entire network to announce the presence and paths
to the mobile sink. However, there is a key difference: the
Direct scheme requires continuous flooding to announce each
mobile sink’s current relays, whereas in the Stash scheme,
the mobile sinks need to announce the anticipated trajectory
node IDs only once (unless the network needs restashing for
difficult prediction scenarios). In our 716-node topology, it took
682 packet transmissions to disseminate one packet from a
mobile sink to the entire network using the Drip dissemination
algorithm in TinyOS 2.x. In our simulation setting, the Direct
method requires one position update every 2 s for the sink speed
of 30 km/h. This position update needs to be disseminated
throughout the network. Hence, the control overhead of Direct
for this setting is 341 packet transmissions per second. On
the other hand, in Stash, the encoded set of trajectory nodes
can be disseminated throughout the network with a total of
7502 packet transmissions per mobile sink.1 Thus, the control
overhead of Direct exceeds that of Stash after 22 s of operation
and continuously increases at 341 packet transmissions per
second, whereas the overhead for Stash remains constant.

Note that the protocols use global knowledge of the net-
work and deliver data to mobile sinks along shortest routes.
A specialized protocol like S4 [40] might be a better choice

1The size of the encoded trajectory requires 11 packets due to 110-b payload
limit in TinyOS packets. Thus, it takes 7502(= 682 × 11) packet transmissions
per mobile sink.

Fig. 11. Wireless sensor network in downtown San Francisco, CA, for
simulation. A total of 716 sensor nodes are distributed over 830 × 790 m2.
(a) Connectivity graph over 716 sensor nodes where links are shown for packet
reception ratio of > 75%. (b) Wireless connectivity characteristic in simulation.

for the dynamic routing environment in sensor networks. To
understand the implications of using a scalable routing protocol
such as S4 to route packets to the stashing nodes, we ran the
S4 protocol in TOSSIM on the same topology with 20 beacon
nodes in which we ran Stash. We computed the cost of the paths
selected by S4 to route packets from the sensor nodes to the
stashing nodes. The result shows that the routing cost of Stash
using S4 is 1.27 times higher than if using an ideal shortest
path routing. We do not expect this change in routing algorithm
to lead to significantly different results of our comparative
evaluation.

We demonstrate that given even limited information about
future trajectories of sinks, optimization of routing paths leads
to significant improvements in routing performance.

1) Network Performance: We evaluated our network opti-
mization scheme against the direct point-to-point and perfect
stashing algorithms using the simulated network. In these



5842 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 64, NO. 12, DECEMBER 2015

Fig. 12. Moving paths of mobile vehicles where each unique moving path is highly overlapped with others in part. Each vehicle moves at a speed of N (30, 52)
in kilometers per hour. We generate 20 different moving paths including the opposite direction as well. All of the 20 vehicles are moving over the networks while
communicating with sensor nodes, as in Fig. 11(a).

experiments, all 716 sensor nodes are transmitting data to
1–20 mobile sinks. Given the moving paths of mobile vehicles,
as shown in Fig. 12, we constructed trajectory clusters and their
profiles. The average length of a cluster profile is 513.

We first analyze how the number of mobile sinks affects the
performance of these algorithms. Although the performance of
all algorithms degrades as the number of sinks increases, sta-
shing algorithms are affected less because they exploit overlaps
in the different trajectories [see Fig. 13(a)]. This effectively pre-
vents network congestion. In fact, data stashing requires only
19% of packets to deliver the same data, compared with direct
routing, achieving an energy saving of over 80%. Consequently,
congestion in the network causes direct routing to drop a
significant number of packets while stashing algorithms deliver
above 80% of the packets even for 20 sinks [see Fig. 13(c)]. The
Stash routing algorithm uses up to 30 retransmissions similar
to the state-of-the-art collection tree protocol [19]. Note that
the performance of stashing algorithms also decreases due to
increased network congestion but at a much lower pace.

The performance of the predictive stashing scheme is close
to the upper bound set by perfect prediction, This means that
the combination of probabilistic prediction and data stashing
performs well even under a degree of uncertainty (or prediction
error). The Direct scheme, on the other hand, requires a large
amount of packet transmissions and suffers from poor packet
delivery performance. This demonstrates that the Stash algo-
rithm can improve routing performance through predictive data
dissemination even with a limited knowledge of the future user
location.

We also evaluate how the length of predicted trajectories af-
fects performance. If the trajectory prediction is very uncertain
and is far in the future or if there are some constraints on
permissible packet delivery delay, it might be preferable not
to use the full predicted trajectories but only allow stashing
at the first W nodes. The results of these experiments are
summarized in Fig. 14. Intuitively, longer trajectories give the
network optimization more choice to select future stashing
nodes. Consequently, sensors are more likely to find stashing
nodes close to their own location, decreasing routing cost

and congestion, while significantly increasing energy saving
in routing. Note that our optimization scheme can only coun-
terbalance the effects of imperfect trajectory prediction if it is
given enough choice. In our experiments, the breakeven point
is at W = 10. Achieving high reliability and efficiency of data
delivery to the sinks, however, has its cost in increased delay.
As W increases, it is more likely that the stashing nodes are
located far in the future along the sink’s trajectory.

There is another interesting tradeoff between transmission
cost and computation cost depending on W . As W increases,
each sensor node receives a larger number of anticipated tra-
jectory nodes from mobile sinks and needs to solve a more
complex LP. In addition, a larger W means a longer term pre-
diction given the same information about trajectory. In practice,
particularly in large networks, where we would expect very
long trajectories, one would set a limit of W ≈ 100.

We investigate the impact of prediction performance with
data stashing on packet delivery reliability. The prediction
algorithm uses the first L nodes of the sink trajectory to predict
the rest. Fig. 15 shows the performance of our prediction
algorithm with data stashing (we use packet reception ratio
as a proxy) as a function of L. Too little information about
the trajectory leads to worse performance as prediction quality
suffers. However, waiting for more information is only useful
up to a point: Waiting for information also results in fewer
choices for stashing since some of the trajectory has already
been visited. In our setting, L = 20 appears optimal.

We evaluate the timing of packet delivery of each scheme to
emphasize why the Direct scheme inherently lacks data time-
liness. In our simulation setting, the stationary sensor network
lead to an average communication hop count of 10, spanning
from 1 to 26 hops [the distribution of the number of hops is
shown in Fig. 16(a)]. For a mobile sink speed of 30 km/h,
the average transition time of mobile nodes is 2.2 s [see the
distribution of transition time in Fig. 16(b)]. Fig. 16(c) shows
that the Direct scheme actually needs much longer than that
to send a packet to the association node of the mobile node.
This means that when the packet arrives at the destination relay
node, the mobile node would likely be out of range already.
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Fig. 13. Routing cost, energy saving, and delivery reliability depending on
the number of mobile sinks. (a) Routing cost. (b) Energy saving. (c) Reliability.
Mean and error bars of standard deviation are shown.

Fig. 14. Routing cost and delivery reliability depending on the number of
predicted trajectory nodes W for ten mobile sinks. (a) Routing cost. (b) Energy
saving. (c) Packet delivery ratio to mobile sinks, representing the mean value
and error bars of standard deviation.
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Fig. 15. Packet delivery reliability depending on number of nodes L used for
prediction. Data for ten mobile sinks, with mean value and error bars showing
standard deviation, is shown.

Fig. 16. Distributions of the number of hops and node transition time of
mobile sinks in evaluation data and packet delay performance. Large packet
delay in the Direct scheme would lead to a critical performance degradation in
the dynamic transitions of mobile nodes. (a) Distribution of the number of hops
throughout the sensor networks. (b) Distribution of sensor node transition time
of mobile sinks. (c) Packet delay, representing the mean time and error bars of
standard deviation.

In our Stash scheme, stashing data at some intermediate storage
nodes (somewhere between the data source and the mobile sink)
significantly reduces the number of travel hops and, therefore,
the packet travel time. Because the intermediate storage node
will be visited by the sink in the future, travel time is less of an
issue.

Fig. 17. Running time for a sensor node to solve an optimization problem for
stashing in each platform/tool depending on the number of mobile sinks.

To evaluate the feasibility of efficiently computing the sta-
shing nodes through optimization on the sensor node plat-
form, we measured the running time for solving the binary
integer program described in Section IV-B. The results for
different platforms are shown in Fig. 17: We tested the perfor-
mance on a Dell Precision 390 PC with Ubuntu Linux and a
2.4-GHz Core 2 Duo processor, as well as an embedded
platform: a fit-PC2 with Ubuntu Linux and Intel Atom Z530
1.6 GHz. We also tested two solvers: the bintprog optimization
toolbox in MATLAB and the AMPL/Gurobi solver. The solu-
tion time for the optimization problem each node has to solve
is less than 500 ms on an embedded platform.

Another strength of data stashing is implicit load balancing.
Fig. 18 shows that data stashing spreads packet transmissions
more evenly, as opposed to the tree-like routing patterns seen in
direct routing to the current position of the mobile sink. In the
Direct scheme, there are many hot regions that transmit a large
number of packets [see Fig. 18(a)]; the Stash scheme performs
much better [see Fig. 18(b)].

We have also tested the robustness of our data stashing
scheme against differences in the speed of mobile sinks.
Because the trajectory matching algorithm implicitly compen-
sates for speed differences, changes in the speed of mobile sinks
do not have a large impact on reliability. After training with a
speed of 30 km/h, varying the speed between 30 and 90 km/h in
the testing phase has no significant impact on reliability, which
remains above 80% for 30 and 50 km/h and above 70% above
for 70 and 90 km/h in Fig. 19.

We explore how the penalty factor α in Section IV-C affects
network performance in Fig. 20. As the optimization procedure
gives a larger penalty to a set of stashing nodes that are further
away from mobile nodes with a larger α, the data pickup time
can be improved, as shown in Fig. 20(a). To achieve this benefit,
the routing algorithm needs to sacrifice the routing cost as in
Fig. 20(b). As the penalty factor increases from 0 to 0.2, the
reduced rate of data pickup time is the most drastic, given the
similar trend in increasing routing cost.
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Fig. 18. Load balancing throughout the networks (for the case of ten mobile sinks). (a) Potential plot of the number of packets sent by a node for the Direct
scheme. (b) Potential plot of the number of packets sent by a node for Stash scheme. (c) Fraction of nodes sending less than a certain number of packets.

Fig. 19. Packet delivery reliability depending on speed of mobile sinks.
Data for ten mobile sinks, mean value, and error bars showing standard
deviation are shown.

Finally, we evaluate the storage requirements that data stash-
ing algorithms impose on sensor nodes (see Fig. 21). It is likely
that data stashing requires more storage than direct routing

schemes; the node stashing most data needs to store around
200 packets in our scenario. Such peaks occur at “favorite”
stashing locations, which turn out to be the intersections of
several trajectories, as shown in Fig. 21(b). In our opinion, data
storage is generally less problematic than radio transmission in
sensor networks, making this a good tradeoff.

VI. DISCUSSIONS

Here, we try to answer the following questions: 1) How can
the data stashing be integrated with duty-cycle MAC protocols;
2) what are differences in empirical results between simulated
dataset and real-world data set; and 3) what are the scenarios in
which the data stashing scheme may not work well?

A. Integration With Duty Cycle MAC

Although this paper focuses on improving energy efficiency
of routing in the network layer, a cross-layer integration with
low-duty-cycle MACs will lead to a more significant energy
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Fig. 20. Impact of the penalty factor α on the data pickup time and the routing cost in the advanced optimization for ten mobile sinks. (a) Average data pickup
time by mobile nodes at the stashing nodes with respect to α. (b) Routing cost with respect to α.

Fig. 21. Storage overhead over the sensor nodes for ten mobile sinks. (a) Storage cost throughout the sensor nodes. (b) Favorite storage node distribution over
the networks where : ≥ 150 packets, : ≥ 100 packets, : ≥ 50 packets, and : ≥ 10 packets, presented with mobile sinks’ moving paths.

saving effect. There are two main types of duty cycling MACs
in sensor networks: synchronous duty cycle MACs such as
S-MAC [66], DMAC [37], Z-MAC [50], and asynchronous
duty-cycle MACs such as B-MAC [48] and X-MAC [9]. Our
data stashing scheme allows sensor nodes to receive trajectory
announcement from a mobile sink at the same time and perform
data stashing simultaneously to multiple stashing nodes. For
this reason, synchronous MAC protocols are more suitable to
data stashing than asynchronous MACs with respect to control
overhead for managing all the wake-up schedules.

To integrate the data stashing scheme with synchronous
MACs, the optimization problem of stashing node selection
needs to be reformulated considering wake-up schedules of
sensor nodes. Data source nodes should choose a set of nodes

that are only awake at the same time for stashing, while keeping
a low routing cost. By sorting the nodes awake at a specific time
among possible trajectory nodes and simply using them as input
in the network optimization (see Section IV-B), it can make our
data stashing scheme easily compatible with synchronous duty-
cycle MAC protocols.

B. Comparison of Empirical Results Between Simulation and
Real-World Evaluation

Both empirical results with simulated and real-world data
sets (see Figs. 10 and 13) show similar trends in routing cost
and packet delivery reliability with respect to the number of
mobile sinks in the network. When we take a closer look at
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routing cost results in Figs. 10(a) and 13(a), the reduction of
routing cost (between Direct and Stash) is more substantial in
the simulated data set compared with real-world data set as
the number of mobile sinks increases. This is related to the
variety of stashing node choices from predicted trajectories.
Since the Clark test bed forms a relatively small network, the
length of wireless traces along the moving paths is smaller
compared with wireless traces in the simulation data set. Con-
sequently, finding stashing nodes closer to data sources that
are also overlapped with other mobile sinks’ future trajectories
would be more likely in longer wireless traces. Therefore, our
data stashing scheme seems to be more suitable to large-scale
networks or densely deployed networks in terms of energy
efficiency.

If we compare the routing cost between Stash and Stash(opt)
from simulation and real-world evaluation, the gap between
Stash and Stash(opt) is relatively larger in real-world evaluation
compared with simulation. This result is related to prediction
quality. Because real-world traces embed a higher variability
in association sequences due to more dynamics in wireless
vagaries, and walking habit and moving speed variations of
humans, the predicted trajectory nodes would be represented
with more dynamic probabilities. By selecting a larger number
of stashing nodes to balance the guaranteed packet delivery, the
real-world evaluation causes a higher routing cost.

C. Limitation in Applicability

One of the most important components in our data stashing
scheme is the long-term mobility prediction algorithm that is
enabled from intensive pattern learning along moving paths
with a certain degree of regularity. If we are given test se-
quences obtained from new moving paths that do not share most
of path segments with paths in the training set, the performance
of data stashing would degrade. As an extreme example, our
long-term mobility prediction would fail to provide meaningful
predictions for test sequences from random motions.

To construct a characteristic database of mobile trajectory
clusters, it is important to learn the mobility model from many
complete long trips that can be differentiated from one another.
If training sequences from only short trips are given in the
learning phase, it would harm the quality of our clustering
algorithm, making data stashing inefficient.

VII. CONCLUSION

We have presented algorithms for extracting mobility pat-
terns using association updates over stationary sensor networks,
and predicting long-term trajectories of mobile sinks. We fo-
cused on the common case that the data are delay tolerant.
We have designed a routing scheme that routes data not to
the mobile sink directly but, instead, to relay nodes along a
predicted path of the mobile sink that are also close to the data
source in terms of communication hops. These techniques si-
gnificantly reduce radio energy consumption for packet routing
while ensuring high-packet delivery ratios.

Our experiments indicate that our scheme provides much
better load balancing, avoiding collisions and consuming en-

ergy resources evenly throughout the network, leading to longer
overall network lifetime. More importantly, we demonstrate
that given limited information about future trajectories of sinks,
optimization of routing paths leads to significant improvements
in routing performance. The proposed method provides not only
a mobile routing protocol but a way to improve any existing
protocol as well by learning and exploiting mobility patterns.

Currently, we only select stashing nodes once and do not
monitor the progress of the mobile sinks as they move through
the network. In scenarios where prediction is more difficult,
recomputing the set of stashing nodes and correcting prediction
errors by restashing at newly predicted nodes could signifi-
cantly increase robustness.

The trajectory clustering algorithm is currently executed in
an offline learning phase. However, our proposed scheme does
not necessarily require a separate offline phase. As each mobile
device keeps updating its own trajectory model, each mobile
node can predict its own anticipated trajectory using a local
model. If the network size is very large, it may not be feasible
to maintain huge databases of mobility trajectories in a mobile
device. In the future, we anticipate working on distributed or
hierarchical computation and storage of the mobility models.

Interesting directions for algorithmic improvements include
a more sophisticated clustering method that explicitly repres-
ents partial trajectories and is able to partition long trajectories
into short pieces that can be clustered more efficiently. A
multitier or hierarchical approach to deal with extremely large
networks is another avenue for future work.
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