
VersatileFL: Volatility-Resilient Federated
Learning in Wireless Edge Networks

JinYi Yoon∗, Jeewoon Kim†, Yeongsin Byeon‡, and HyungJune Lee∗
∗Department of Computer Science and Engineering, Ewha Womans University, Seoul, South Korea

†Department of Computer Science, University of California, Irvine, CA, USA
‡School of Computing, KAIST, Daejeon, South Korea

yjin3012@ewhain.net, jeewoonk@uci.edu, yeongsinbyeon@kaist.ac.kr, hyungjune.lee@ewha.ac.kr

Abstract—In the era of artificial intelligence (AI), deep neural
networks (DNNs) become larger using a massive amount of data,
and thus, they are trained via cooperative computing devices (e.g.,
GPUs or servers) based on federated learning. As computation
and data generation move to the edge due to privacy, latency, or
bandwidth issue, DNN with edge devices has been investigated.
However, edge devices are wirelessly connected and mostly incur
fragile connectivity. We propose VersatileFL, a novel volatility-
resilient deep learning framework under hostile environments.
We address short-term and long-term volatility: 1) versatile dis-
tributed learning against short-term fluctuation by substituting
the missing intermediate values with the past or approximated
values and 2) model rearrangement with runtime connectivity
diagnosis against long-term variation by adaptively adjusting the
partitioned model for the impaired. We have demonstrated that
VersatileFL has achieved 62.0 % and 31.9 % higher performance
than hostile learning without a maintenance scheme against the
short-term and long-term volatility, respectively.

Index Terms—Federated Learning, Distributed Learning,
Split Learning, Model Parallelism, Wireless Networks, Network
Volatility, Edge Intelligence

I. INTRODUCTION

With the advance of Artificial Intelligence (AI), Deep
Neural Networks (DNNs) have been extended with numerous
parameters and deep layers to extract meaningful information
from a vast amount of data with complicated tasks. However,
in the era of the Internet of Things (IoT), data is mostly
and constantly generated from the user-side. It is inefficient
to upload all of the raw data into servers to process data-
driven tasks, usually incurring some non-trivial problems such
as lack of bandwidth, data privacy, or network latency [1].
Therefore, the existing (semi-) centralized AI frameworks may
not be desirable for such applications. To tackle the problem,
federated learning towards the edge have been proposed,
where tasks and data sources are mostly requested at the user-
side [2]. Different from its own purpose, most works mostly
focus on the inference at edge devices, whereas the actual
training is still being processed at high-computing servers [3].

This work was supported by the National Research Foundation of Ko-
rea (NRF) grant funded by the Korea government (MSIT) (No. NRF-
2021R1A2B5B01002906), and by the Institute of Information & commu-
nications Technology Planning and Evaluation (IITP) grant funded by the
Korea government (MSIT) (No. RS-2022-00155966, Artificial Intelligence
Convergence Innovation Human Resources Development (Ewha Womans
University)). The corresponding author is HyungJune Lee.

Considering lightweight yet efficient learning and inference at
the edge side has been a key challenge for edge intelligence.

As a critical issue, edge devices are wirelessly connected
with each other, often leading to transmission link failure or
device malfunctioning. Most of previous works on federated
learning under wireless links focus on how to model a neural
network to learn intrinsic patterns well, improve the inference
accuracy, enable fast learning, or build a stubborn commu-
nication technique [4]–[6]. It has implicitly been assumed
that learning paths are almost flawless during propagation,
without considering possible imperfect intermediate outputs
[7]. However, well-performing models can no longer work in
case of missing parameters, omitted pass, misleading data,
or fallacy in computation, incurring the learning collapse.
The real-world volatile wireless environment often leads to
substantial link-wise or device-wise failures.

In this paper, we propose a versatile model partitioning
strategy that addresses both short-term and long-term network
fluctuations in a network of edge devices. Due to the inherent
volatility in wireless networks, device connectivity changes
unexpectedly. By introducing a “versatile” distributed learning
called VersatileFL allows a model to be trained under the
imperfect delivery caused by link-wise failures. Moreover,
since wireless networks vary over time, some long-term link
connectivity changes, device malfunctioning, or available re-
source inflow can often occur more severely. For run-time
rearrangement, we periodically analyze network dynamics and
discover a sub-model rearrangement scheme by monitoring the
run-time network connectivity.

To the best of our knowledge, VersatileFL is the first work
to propose a volatility-resilient distributed learning for edge
networks against both short-term and long-term variations. We
have demonstrated that the proposed scheme outperforms edge
learning without management with 62.0 %, while incurring
slightly higher transmission overhead with a factor of 3.07.
Our contributions can be summarized as follows:

• We propose a novel distributed learning mechanism,
VersatileFL, which can compensate for a volatile link or
device variations in a network of edge devices.

• By incarnating necessary tasks upon short-term or long-
term connectivity volatility, we provide a way to make
edge-level training stable yet efficient.

• We validated VersatileFL with extensive experiments
under various network dynamics. Our approach has out-
performed other counterpart algorithms and demonstrated
the efficacy of our key claims.

II. RELATED WORK

Our work applies volatile federated learning on top of the
model parallelism in a distributed fashion.

The model parallelism assumes that the delivery among
workers is stable via a wired connection such as multiple
GPUs or servers [7]. However, in the edge network context
where wireless communication is a norm, the overall overhead
highly depends on how to divide the network. It is directly
correlated to transmission cost and intermediate failures. For
example, if a device takes charge of the whole neurons from
a single layer (via vertical partitioning), it would cost less
communication among devices, but would instead be risky
to lose the whole layer-to-layer propagation with only a
single failed pass case [8]. On the other hand, if a device
is responsible for partial neurons from each layer across the
whole layers (via horizontal partitioning), it would be more
relatively easy and stable to secure a complete propagation
pass across the layers, but excessive communication among
devices that take charge of the neurons at the same layer is
required to make progress towards a successful learning pass.

Recent works solve the problem of resilient distributed
learning over wireless edge devices in the area of federated
learning, distributed inference, or multi-agent reinforcement
learning [4]–[6]. They mainly solve the problem of model
design by optimizing resource consumption, latency, commu-
nication reliability, or overhead [9]. More closely related to this
problem, EdgePipe [10] presents a resilient distributed learn-
ing structure with learning acceleration, but any extra backup
scheme for edge-based learning under volatility among devices
has not been well investigated. However, previous works on
resilient learning in wireless networks can be fragile in case
of dynamic failures of both links and nodes. As a subsidiary
framework to supplement the volatility, some backup workers
are deployed in distributed learning [11]. Although they can
be a solution for fast and reliable learning in place of a
parameter server, a more in-depth approach that can address
both intermittent and permanent network volatility needs to be
devised in the inherently dynamic wireless networks.

III. SYSTEM MODEL

We consider the problem of deep learning in a distributed
edge network consisting of wireless devices. To reduce the
computational burden at the edge, we take a model parallelism-
driven approach. Model partitioning makes even a large train-
ing model feasible at the low-end devices. We propose Versa-
tileFL, a novel collaborative learning framework over DNNs,
where neurons in the adjacent layers are fully connected.
As in Fig. 1, it is supposed that a DNN is partitioned into
multiple edge devices. The devices in charge of the input layer
begin a round-trip with on-board training data. Each device
takes charge of its own sub-model shard, and the training is
processed through wireless links in the order of layers.

2) Runtime Rearrangement

: Model partition adjustment with
connectivity diagnosis against

long-term variation

1) Versatile Distributed Learning

: Resilient learning under short-term
failures caused by link fluctuation

Fig. 1. Overview of VersatileFL, a volatility-resilient learning architecture

It is assumed that edge devices communicate with each
other via wireless radio such as IEEE 802.11, without any
help of a cloud service. Due to the inherent fluctuations,
links between edge devices can be disconnected intermittently.
As another critical issue, if some devices malfunction, the
corresponding partial sub-models may completely be lost
during training. Our goal is to make a training part durable
even under volatility by diagnosing and managing the delivery
status among the partitioned networks.

To make a distributed learning resilient under volatility, we
suggest two ways to derive a sturdy and agile mechanisms by
taking into account the short-term and the long-term volatility.

1) Versatile Learning against Short-Term Volatility: In
wireless networks, we cannot always guarantee seamless deliv-
ery among edge devices. Intermittent communication failures
occur unexpectedly since wireless communication is fragile
due to the dynamics of the wireless environment. Even though
there are many supplementary schemes including retransmis-
sion under volatility, it mostly incurs excessive transmission
overhead, which critically affects performance at the edge
side. Without any additional support from transmission re-
covery, it would be interesting and necessary to let learning
itself be proceeded with the best effort even with imperfect
propagation. We present a versatile learning scheme, which
sub-optimally approximates the outputs in the forward and
the backward passes by substituting missing values. This
approach enables robust training smoothly using intermediate
pass patches. More details are described in Sec. IV.

2) Model Rearrangement against Long-Term Volatility: In
a relatively stable architecture using link fluctuation mainte-
nance, some long-term dynamics can destroy the learning even
more severely, such as device malfunctioning or obstruction
between devices. Also, the current network configuration
accordingly becomes different from the initial network con-
nection. Due to these kinds of long-term variations, some
more structural arrangement is necessary. We propose a cost-
effective runtime maneuver, which detects more long-term
network change or loss and in-flow of devices, and appropri-
ately rearranges the model allocation. Without any additional
transmission overhead, we can detect both link and node
failure cases by logging reception history, and then optimize a
deep learning structure to make learning stable. The detailed
process is described in Sec. V.

𝑋1

𝑌2

𝑌1

𝑌3

𝑋2

(a) Forward passes (b) Matrix multiplication in forward

𝐼1

𝑂2

𝑂1

𝑂3

𝐼2

(c) Backward passes (d) Matrix multiplication in backward

𝑋1

𝑂2

𝑂1

𝑂3

𝑋2

(e) Gradient compu-
tation

× =

× =

XT
(𝒏𝒃𝒂𝒕𝒄𝒉 × 𝟐)

OT
(𝟑 × 𝒏𝒃𝒂𝒕𝒄𝒉)

∆T
(𝟑 × 𝟐)

𝑶𝟏

𝑶𝟐

𝑶𝟑

𝑿𝟏 ∅

∆𝟏𝟏 ∅

∆𝟏𝟐 ∅

𝑿𝟏 𝑿𝟐
∆𝟏𝟑 ∆𝟐𝟑

∆𝟏𝟏 ∅

∆𝟏𝟐 ∅

∆𝟏𝟑 ∆𝟐𝟑

(f) Matrix multiplication in gradient computation

Fig. 2. The forward, backward propagation, and gradient computation, where
Dev. 1 and Dev. 2 take charge of red and blue, respectively. The solid line
denotes a successful connection, with the dotted line for a failed connection.

IV. VERSATILE DISTRIBUTED LEARNING AGAINST
SHORT-TERM VOLATILITY

We present a versatile distributed learning mechanism to
enable learning under fragile wireless propagation. Instead
of directly using uncertain intermediate computed values at
the forward or the backward pass, which may be caused by
instantaneous link fluctuations, we accept the innate volatility
during the training and control whether a newly computed
value can be reflected or not. If the new update is not ready to
be reflected, we decide to apply past or approximated values.
Further, we suggest a dynamic update mechanism during each
pass for more stable training progress.

We devise to partition the dense layers to make deep
learning viable on edge devices, which account for the most
computation loads in DNNs [8]. We focus on the dense layers,
which are mainly partitioned in model parallelism, and other
types of layers such as convolutional layers or pooling layers to
improve the learning performance can be divided by filters or
easily stacked as an additional layer regarding the computation
and communication overhead.

A. Forward Propagation

During a forward propagation, a training batch is injected
into the neural network with certain parameter values. In
case that some specific forwarding paths become unstable
toward a successful propagation to the output layer, it may
be harmful to use the intact intermediate values without any
careful investigation.

Yj = Σ
Nl−1

i=1 (Xi ·Wi,j) (1)

where Yj and Wi,j are the outputs and the weights, respec-
tively, with Nl neurons at layer l. Xi is the input of the
layer, which is the output of the previous layer, and Xi is

L-1 LBack-
propagation :

Result
Sharing : Output Output

(a) Layer-wise

A

L-1 L

Output Output

(b) Neuron-wise

B

C

D

A

L-1 L

Output Output

(c) Link-wise

Fig. 3. Granularity basis for the saved gradients for backpropagation and
result sharing in VersatileFL, where backpropagation passes from layer L to
L− 1, and result sharing occurs within an output layer

zero, when transmission from neuron i to j, i.e., TX(i → j),
fails. For example of the forward propagation in Fig. 2(a),
Y1 = Σ2

i=1(Xi · Wi,1) = X1 · W1,1 + X2 · W2,1, but when
TX(1 → 2) succeeds, but TX(2 → 1) fails, Dev. 1 computes
Y1 and Y2 by substituting X2 by zero (as one of the substitute
values) as Y ′

1 = X1 ·W1,1+0 ·W2,1 = X1 ·W1,1 in Fig. 2(b).
A successful forward propagation until the last output layer

is very crucial for its subsequent backward propagation. Only
after calculating the correct loss value at the output layer, can
the backpropagation continue to compute the gradients and
update the weight parameters. For example, if only half of the
activation at one layer is successfully delivered to its next layer
in DNN with four layers, only 0.54−1 = 0.125 = 12.5 % of
training is valid; the remaining 87.5% misleads the training.

To prevent learning from being dominated by intermit-
tent imperfect propagation, we introduce a forward criterion,
thresfw, to filter out problematic forward passes. If all of the
layer-to-layer success rates are larger than thresfw, a forward
pass is allowed to continue. For example, if thresfw is set
to 0.5, the forward success rate in the sequence of [0.75, 1,
0.5] with four layers is regarded as valid, and the backward
passes are proceeded with the outputs. However, in case of
[0.75, 0.25, 0.5], some rates (i.e., 0.25 and 0.5) do not meet
the criterion, and the case is considered as invalid.

For a training batch that satisfies the forward criterion up
to the output layer, we use the batch to calculate the loss and
continue with its subsequent backward propagation.

B. Backward Propagation

For backpropagation, it is important to determine which
value to be passed to the precedent layers, and also how to
compute the gradient values of the loss in case of disconnec-
tion. Similar to the forward pass, the backpropagation error
can be computed as follows:

Ii = ΣNl
j=1(Oj ·Wi,j) (2)

where Oj is zero when TX(j → i) fails. As in Fig. 2(c),
I2 = Σ3

j=1(Oj ·W2,j) = O1 ·W2,1+O2 ·W2,2+O3 ·W2,3, but
if TX(1 → 2) fails, O1 and O2 are regarded as zeros. Thus,
as in Fig. 2(d), we approximate the value as I ′2 = 0 ·W2,1 +
0 ·W2,2 +O3 ·W2,3 = O3 ·W2,3.

To compensate for the missing values due to disconnection,
VersatileFL saves past gradients that have successfully been
calculated with a previous batch. Then, it updates the weights
with the previously saved gradients when the current gradients
are missing due to disconnection.

Although loss is more relevant to representing each learning
step, we decide to save and then reuse the gradients due to the
time difference of forwarding outputs and backwarding loss.
The gradients using the Gradient Descent Optimizer [12] are
calculated as follows:

∆i,j = Xi ·Oj (3)

If we save the loss instead of gradients at a certain time t, the
saved value of Oj at t is used with another forwarding value
of Xi. This time gap between the input and the saved loss
consequently leads to inaccurate direction, and thus, saving
the gradient can make it more adequate. We can compute the
gradient with the forward value Xi and the backward loss Oj ,
as illustrated in Figs. 2(e) and 2(f).

According to the granularity of the saved gradients unit,
the type of backpropagation and result sharing process as in
Fig. 3, is classified into one of three backup methods: layer-
wise, neuron-wise, or link-wise backup.

1) Layer-wise (Fig. 3(a)): Only if all of transmissions from
layer L to (L− 1) are successful, layer (L− 1) saves its
gradients. When there is any single disconnection among
adjacent layers, it loads the previously saved gradients
and use them to update the corresponding weights.

2) Neuron-wise (Fig. 3(b)): When all of the transmissions
to a single neuron are successful, then the neuron saves
its own gradients regardless of the other neurons in the
same layer. If neuron A receives the loss from all the
neurons in layer L, it computes new gradients.

3) Link-wise (Fig. 3(c)): We save the gradients for each
neuron, similarly to the neuron-wise approach. However,
with the link-wise approach, if any transmission to
the precedent layer is successful, the neuron saves the
gradients by substituting the missing value of neuron D
to A as zero.

Our layer-wise approach produces a complete value, but it is
almost impossible to succeed in the full path in a volatile net-
work. On the other hand, more probable link-wise refreshment
gives more chances to save and reuse the former gradients. It
should be noted that only after the results are shared at the
output layer, we are able to obtain the final loss so that we
can start the backward process of the neurons. Therefore, only
the precise methods such as the layer-wise and neuron-wise
backpropagation except for link-wise backpropagation can be
leveraged in the result sharing. According to classification, we
aim to use the most sophisticated approach to update as late
as possible by using link-wise and neuron-wise result sharing.

However, continuous failures especially in horizontal parti-
tioning and fragile networks, which incur a high possibility of
disconnection, force the model to use the same gradients. The
updated weights can be calculated as (Wi,j−γ ·∆i,j), where γ
is the learning rate, and training with previous values means
that γ increases proportionally with the number of reusage.
If we aggressively use the outdated gradient without pause, it
entails a high risk of being diverged in learning. Therefore, we
restrain the number of reusage to prevent excessively repetitive
usage of the saved gradients by introducing gradReusebw in

backpropagation. When the transmission has been unsuccess-
ful during gradReusebw steps, we do not reuse the saved
gradients any longer. If the model gets the updated gradients
before gradReusebw, we refresh the number to zero.

However, it is known that this has some risk of diver-
gence [13]. To remedy the divergence problem, we define
gradReusebw to control the learning speed, where t ≤
gradReusebw. Since it is hard to directly configure the
optimal learning rate, we dynamically adjust gradReusebw,
which is similar to the dynamic learning rate tuning [14].

C. Dynamic Update
With either too large thresfw or too small gradReusebw,

the weights would be rarely updated, making a model hard
to converge, while the opposite cases can allow the weight
to be updated even when the success rate is low. Thus, we
dynamically adjust these values throughout learning process to
make training faster and more stable [9], [15]. During the early
stage of training, for a faster saturation of model, the weight
should be updated more frequently with smaller thresfw and
larger gradReusebw. Then, we monitor the convergence based
on an early stopping mechanism, which is to check whether
the train loss becomes worse than the currently best model
so far. Once the train loss stops improving, we dynamically
adjust thresfw and gradReusebw to be larger and smaller,
respectively. In this way, it is possible to construct a rigorous
model with credible propagation rather than fast convergence.

V. RUNTIME REARRANGEMENT AGAINST LONG-TERM
VOLATILITY

Due to the intrinsic fluctuation in a wireless edge network,
run-time network conditions change over time, possibly re-
sulting in unexpected learning progress far from the intended
model. When the whole or partial device connectivity changes
due to network configuration variation or obstacle obstruction,
it highly affects the overall frequency of disconnections in the
learning passes. It means that some more active management
approaches for long-term network changes need to be incor-
porated behind the instantaneous output approximation.

We propose runtime rearrangement to manage the long-
term failures in addition to the base structure. Our framework
consistently monitors the real-time network fluctuation and
adaptively reorganizes the allocated partial models on the
workers. Based on the runtime wireless transmission records,
we penalize a certain device with poor connections and han-
dover its responsible sub-model to another device from time to
time. Then, since the appointed work schedule was determined
by the untimely static network connectivity, we also modify
the corresponding schedule of the affected devices.

A. Learning Progress Diagnosis for Participating Devices

We propose a cost-effective approach to diagnose the learn-
ing progress for long-term connection failure. The training
batches are injected in order, and it means that we can perceive
the presence of failure without any additional connection
check. When a later output has arrived even before an earlier
output, it implies that the corresponding earlier batch is lost

TABLE I
THE CREDIBILITY MEASURE AMONG FOUR DEVICES

(a) Initial network connectivity at t = 0

Dev. ID 1 2 3 4
1 1.0 0.9 0.3 0.5
2 0.6 1.0 0.9 1.0
3 0.3 0.8 1.0 0.8
4 0.5 1.0 0.9 1.0

(b) Runtime network connectivity at t = 1

Dev. ID 1 2 3 4
1 1.0 0.0 0.5 0.1
2 0.0 1.0 0.0 0.0
3 0.6 0.0 1.0 0.3
4 0.0 0.0 0.2 0.1

(c) Credibility at t = 1 when α is 0.9

Dev. ID 1 2 3 4
1 1.00 0.09 0.48 0.14
2 0.06 1.00 0.09 0.10
3 0.57 0.08 1.00 0.35
4 0.05 0.10 0.27 1.00

in the middle of learning passes. By recording the actual
transmission success history from the senders at the receiver,
it is possible to diagnose both network configuration variation
and device malfunctioning at once. If a series of packets never
arrive, we can decide the situation as the device malfunction.
On the other hand, if some deviations from the expected
metrics are observed, it is regarded as a network status
change. Through this diagnosis mechanism, we do not settle
for the present learning structure and consistently suspect and
diagnose the volatility of wireless networks and edge devices
for discovering an evolving learning structure.

To capture how well a nearby device transmits the learning
progress to its receiver, we introduce a credibility measure
from the prearranged senders to their own receiver. The
receiver, which takes charge of the following passes (i.e., its
subsequent layer in the forward passes and its precedent layer
in the backward passes), assesses the senders by recording
the delivery result. In this phase, some new devices can
be discovered, and the credibility of the joining resource is
recorded with zero. The newly joined devices are inserted into
a layer-wise set with the least number of devices. Since the
instantaneous decision may spoil the whole process, we use the
exponentially weighted moving average (EWMA) by reflecting
the training progress to prevent the surveillance from being
excessively controlled by a temporary network status change.
We define a credibility measured denoted by Cr

s (t), at time t
by collecting the success ratio, for every management window
w, for each pair of sender s and receiver r as follows:

Cr
s (t) = α ·Rr

s[t− w + 1, t] + (1− α) · Cr
s (t− w) (4)

where Cr
s (0) is initial network connectivity, and

Rr
s[t− w + 1, t] denotes for the rate of successful delivery

during the past w window period from the current time step
t. α reflects the weight on the recent connectivity based on
EWMA: a smaller α value prioritizes a historical measure
relatively more than instantaneous delivery results. With a
larger α value, the system can adapt to the network dynamics
more aggressively in an early stage. As a side effect, if the
network condition frequently changes, it can raise a high
migration overhead. In case of the α value of 1, the credibility
only reflects the recent communication records.

For example, with four devices and the initial connectivity
of Table I(a) and the next runtime connectivity of Table I(b),
the credibility is calculated as in Table I(c) using the α value
of 0.9. If a certain device malfunctions such as Dev. 2 in
Table I(b), its connectivity with other devices becomes zero.
Then, the credibility of the malfunctioned node becomes low,
and thus Dev. 2 is diagnosed as failed.

B. Model Rearrangement
Once we detect some severe dynamics in the network,

i.e., the credibility measure of a specific device is below a
certain threshold, we adaptively rearrange the current model
partitioning for the affected device, to assure durable learning.
Since the connectivity of the devices across layers becomes
very weak during a certain amount of time, we consider the
device as unavailable to perform a given assigned learning
task. To tackle the problem, we find a substitutional device
to which some neurons from the poor device are reassigned
on behalf of it, to keep the learning progress intact. The
round-trip in the learning process cannot be reversed in order
from the input layer to the output layer in forward and the
opposite order in backward. It means that if the rearranged
sub-models cross over layers, the full work schedule should
also be revised. To make the runtime adjustment defensive yet
stable, we assign the neurons to be passed only to the devices
in charge of the same layer. It ensures that the rearrangement
is constrained within the affected layer only internally.

Given the credibility for the pairs of sender and receiver in
each layer, we combine all assessments for a device as the
sender and the receiver on average in that the status as both
the sender and the receiver affects the net connectivity. For
example in Table I(c), the connectivity of Dev. 2 as a sender
is 0.06, 0.09, and 0.10 (to Dev. 1, 3, and 4, respectively), and
the connectivity as a receiver is 0.09, 0.08, and 0.10 (from
Dev. 1, 3, and 4). Thus, the average credibility of Dev. 2, C2,
is given by avg(0.06, 0.09, 0.10, 0.09, 0.08, 0.10) ≈ 0.087.

When a certain sender device satisfies the condition,
Cs(t) < Cthres, we start rearranging the layer-wise neuron
allocation according to the ratio of credibility value. For
example, in case of two devices in charge of five neurons
each in the layer of Nneuron = 10 in total, one device has the
credibility of [0.1, 0.2], which is measured at each receiver
side, resulting in C1 = 0.15 on average, whereas another
device has the credibility of C2 = 0.6. The credibility ratio of
two devices is calculated as 0.15 : 0.6 = 1 : 4. Based on the
credibility, we set a desirable number of allocated neurons as
neuronNum = [2, 8] by (1

1+4 ×10) : (4
1+4 ×10) = 2 : 8. By

computing the difference of the desirable model partitioning,
neuronNum, and the current model, prevNeuronNum, we
can find out how many neurons need to be transferred from one
to another, neuronMove = [−3, 3]. Then, Dev. 1 randomly
selects three neurons and passes them to Dev. 2.

We reorganize model partitioning across all layers and all
workers. If the whole network changes, all of the initial
processes have to be done from the beginning. Then, the work
schedule of each worker should also be newly allocated at

0 1 2 3 4 5 6 7 8 9 10

of Epochs

0

20

40

60

80

100
T

es
t A

cc
ur

ac
y

(%
) Ver. (Naive,

PipeDream,
VersatileFL)
Hyb.
(Naive)
Hor.
(Naive)
Hyb.
(VersatileFL)
Hor.
(VersatileFL)

(a) Test accuracy with respect to the training epochs

1 2 3 4 5 6 6 5 4 3 2

 Forward Backward

0

0.2

0.4

0.6

0.8

1

S
uc

ce
ss

fu
l P

as
s

R
at

e Ver. (Naive,
PipeDream,
VersatileFL)
Hyb.
(Naive)
Hor.
(Naive)
Hyb.
(VersatileFL)
Hor.
(VersatileFL)

(b) Successful pass rate in layer-to-layer propagations

0 1 2 3 4 5 6 7 8 9 10

of Epochs

0

20

40

60

80

100

T
es

t A
cc

ur
ac

y
(%

)

Vertical
Hybrid (2X3)
Hybrid (3X2)

Horizontal
Random

(c) Different model partitioning

Fig. 4. Performance of VersatileFL with the short-term link fluctuation according to each different model partitioning structure

runtime, since the given schedule has been determined by
the initial network connectivity. However, generating a totally
new schedule across the whole model may incur additional
costs due to its resulting computation overhead to manage the
new schedule. Therefore, in our adjustment scheme, only the
devices with connectivity changes participate in the rearrange-
ment process. We consider backup training for both expected
and unexpected failures. When the devices are pre-conscious
of their incoming breakdown for predictable situations such as
battery outages, the trained parameters in the allocated sub-
model are handed over to a selected target device. However,
if a participating device is missing in some unpredictable
accidents, the newly assigned partition taken over from the
missing device is trained from the beginning.

Through local management, we leave the devices with stable
connectivity unaffected by the network condition and process
their own primary tasks. Moreover, due to the fixed sequence
of round-trip, where the forward and backward passes are
enforced wholly in the reverse order, we convey the records in
the outputs. Since all devices in charge of adjacent layers can
inter-communicate in DNNs, we readily inform the progress
of adjustment. In this way, the schedule is maintained in the
order for the overall schedule while proceeding with all of the
batches with the rearrangement on each layer itself.

Since more devices participate in each layer towards Hor-
izontal allocation, the communication overhead increases. It
means that even though we load the neurons into other devices,
the number of communications for learning is constant. More-
over, when there are affordable devices, we can prevent the
excessive transmission cost by inserting the incoming devices
into the layer-wise set of the least number of devices.

VI. EVALUATION

We validated VersatileFL using PyTorch 1.4.0 with Python
3.7. We conducted base experiments with DNNs of six dense
layers including four hidden layers with 128 neurons. We used
the activation function of Rectified Linear Unit (ReLU) and
the basic gradient descent optimizer, which do not need any
additional intra-layer information. We set the learning rate to
0.01 and the batch size to 100. We used MNIST, EMNIST,
CIFAR-10, and mainly Fashion-MNIST dataset consisting of
60,000 train data and 10,000 validation data. Considering the
characteristics of the dataset, the loss function is defined to
be softmax cross-entropy with logits. To prevent the perfor-
mance ruled by the initial weights, we investigate resilience
performance under five different trials.

We simulated a wireless network of six edge devices over
the Region of Interest (RoI) of 50×50m2 using the combined
path-loss shadowing model. We varied the path-loss exponent
from 3.0 to 3.6, and 3.2 is mostly used as the default
setup. To simulate a long-term critical link failure scenario,
the path-loss exponent of 6.0 is used. The reference loss is
set to 46.68dB, and the white Gaussian noise of N (0, 82).
We adopted the Packet Reception ratio (PRR) as the main
connectivity measure. For the initial network, we counted the
percentage of successful transmissions by sending 50 packets
and quantified the overall link connectivity of 77.67 % on
average. To obtain the statistically meaningful results on top of
the dynamic fluctuation, we ran five training experiments with
100 test runs per training and took the average performance.

We partitioned DNNs into six sub-model shards such that
six edge devices are assigned to their own sub-model. We
implemented four different partitioned models: 1) Vertical:
a single device is responsible for a whole layer based on
the core partitioning architecture and 1-Forward-1-Backward
scheduling from PipeDream [16]; 2) Horizontal: a single
device participates across all of the layers, which is an extreme
opposite with Vertical; 3) Hybrid: a compromise between
Vertical and Horizontal to partition in the level of both layers
and neurons that borrows the resilient partitioning mechanism
under volatility from EdgePipe [10]; and 4) Random: a random
distribution over the devices, but the allocated neurons per
worker show almost similar to Horizontal due to the regularity
of the randomness. For load balancing, we evenly partition
except for Random. Among various work scheduling schemes,
we borrow the idea of an efficient device work schedule
from EdgePipe [10], which accelerates the learning process
by applying the pipeline schedule into model parallelism. We
have compared our scheme with Naive, which does not have
any maintenance scheme against failures.

In VersatileFL, we tuned the parameters of thresMAX
fw to

be 0.5, which means we consider the forward as valid when
the number of connected links is larger than the number of
missing signals. thresfw varies from 0 up to 0.5 by increasing
in the interval of 0.1 as the loss decreases for 60 steps. For
backpropagation, we used the gradReuseMAX

bw value of 10
with the decrement level of 1 down to 0. In addition, there
is a possibility that some more generalized tuning approaches
considering the network connectivity can be embedded.

A. Resilience under Short-Term Link Fluctuation
First, we investigated resilience learning performance using

various partitioning models, without long term-wise manage-

Hybrid Horizontal
0

20

40

60

80

100
T

es
t A

cc
ur

ac
y

(%
)

Naive
VersatileFL: (BW) layer + (RS) perf
VersatileFL: (BW) neuron + (RS) perf
VersatileFL: (BW) link + (RS) perf

(a) Backpropagation

Hybrid Horizontal
0

20

40

60

80

100

T
es

t A
cc

ur
ac

y
(%

)

Naive
VersatileFL: (BW) link + (RS) fail
VersatileFL: (BW) link + (RS) layer
VersatileFL: (BW) link + (RS) neuron
VersatileFL: (BW) link + (RS) perf

(b) Result sharing

Fig. 5. VersatileFL with respect to the granularity of backpropagation with
the ideal result sharing and result sharing with the link-wise backpropagation
in horizontal allocation

ment in Fig. 4. As shown in Fig. 4(a), the Horizontal allocation
in which more distinct devices are allocated to each layer,
benefits more from volatile learning. Without sub-optimally
training the model, there is no perfect data delivery until
the output layer in horizontal allocation at all, which means
it failed to converge due to the high risk of disconnection
between adjacent layers. On the other hand, when we partition
DNN vertically in the level of layers, only single transmission
is needed for propagation to the subsequent layer, resulting in
fast convergence with a maximum test accuracy of 83.11 %.
However, since the Vertical allocation is more likely to lose
the whole output due to a single failure, it shows just a binary
inference result: totally successful or totally failed delivery.

Taking a closer look at the rate of successful passes in
Fig. 4(b), the volatile learning approach takes advantage of less
probability of losing the whole layer in horizontal allocation
and shows the most stable performance with the lower spikes.
The cascading propagation degrades the hostile learning with
a dramatic decrease, whereas horizontal allocation in our
scheme rescues the successful delivery in the last layer-to-
layer backpropagation. It implies that VersatileFL contributes
to making the learning path resilient under the link uncertainty.

In Fig. 4(c), different partition models including Hybrid
(3 × 2) with two devices per layer across three consecutive
layers are compared to each other. We verified that VersatileFL
performs well in various model partitioning. Even though
we randomly partition the neurons considering neither load
balancing nor volatility, Random partitioning can achieve
the almost same performance as others. It means that our
management makes any partition types for distributed learning
versatile to the turbulent network dynamics.

We examined how the granularity of learning affects the
overall performance in the aspects of backward passes and
result sharing in the horizontal model partitioning in Fig. 5.
As indicated in Fig. 5(a), with the assumption that there is no
failure upon calculating the loss in the result sharing phase, the
most strict layer-wise updates are almost untrained, since any
single transmission failure can spoil the learning path. When
we scale down to neuron-wise and link-wise approximation,
we can successfully backpropagate with the partial paths. The
horizontal allocation fully benefits from versatile learning and
achieves 51.24 % and 61.61 % improvement in neuron-wise
and link-wise, respectively. On the other hand, the hybrid
allocation allocates two devices to one layer, and all of the
results show almost the same performance improvement.

 3.0
(84.80%)

 3.2
(77.67%)

 3.4
(67.67%)

 3.6
(57.67%)

Path Loss Exponent in Testing

0

20

40

60

80

100

T
es

t A
cc

ur
ac

y
(%

)

(a) Network connectivity

4 6 8 10

of Devices

0

20

40

60

80

100

T
es

t A
cc

ur
ac

y
(%

) Ver. (Naive,
PipeDream,
VersatileFL)
Hyb.
(Naive)
Hyb.
(VersatileFL)
Hor.
(Naive)
Hor.
(VersatileFL)

(b) # of devices

Fig. 6. VersatileFL in various network configurations

Naive 2-TX 4-TX 5-TXVersatileFL ACK
0

20

40

60

80

100

T
es

t A
cc

ur
ac

y
(%

)

104

105

106

107

108

T
ra

ns
m

is
si

on
 C

os
t (

pk
ts

)

Test Accuracy
Transmission Cost

Fig. 7. Test accuracy and transmission cost depending on different transmis-
sion failure recovery schemes

Regarding the result sharing in Fig. 5(b), we investigated
the effect of volatility at the last result sharing step in the
DNN architecture. We compared the realistic intermittent
transmission with the ideal perfect transmission at the result
sharing step. We applied link-wise backpropagation in the
experiments. We obtain the similar trend with the backprop-
agation granularity. A narrow approach contributed to early
convergence with a small gap against the ideal result sharing
case. With our neuron-wise updates in result sharing, we
can achieve successful training as the ideal result sharing
case under volatility. From Fig. 5, if we do not consider the
sub-optimal updates in learning, the whole training can be
collapsed even with a single transmission failure.

In Fig. 6, we investigated the effect of network connectivity
by varying the path-loss exponent and the number of devices
participating in learning. As the network deteriorates as shown
in Fig. 6(a), the learning path has a high risk of collapse, and
Naive without managing the link volatility seriously suffers
from learning. Although our versatile learning also degrades,
we maintain relatively stable training progress with only
a 12.71 % decrease in Horizontal even when the network
connectivity of averaged PRR varies from 84.80 % to 57.67 %.
Even under severely broken networks, VersatileFL takes ad-
vantage of the sub-optimal training, resulting in a performance
gap of 66.16 % and 22.65 % compared to Naive in horizontal
and hybrid allocation, respectively. We varied the number of
devices over the fixed six layers in Fig. 6(b). VersatileFL
shows stable learning with more workers, incurring a higher
probability of disconnection from the more transmissions.

We compared our VersatileFL with respect to inference
accuracy and transmission cost with two recovery schemes
without versatile management: 1) r-TX: sending the same
packet with multiple r-times consecutively; and 2) ACK: keep-
ing sending the packet until receiving its acknowledgment. As
indicated in Fig. 7, we reached 61.96 % higher testing accuracy
than Naive with a factor of 6 in communication overhead,
which is similar to a consecutive packet transmission with
four times. Interestingly, VersatileFL shows the best trade-

0 1 2 3 4 5 6 7 8 9 10

of Epochs

0

20

40

60

80

100
T

es
t A

cc
ur

ac
y

(%
) Naive

PipeDream
EdgePipe
VersatileFL

(a) Different federated learning approaches in the
wireless networks with a path loss exponent of 3.6

MNIST Fashion
-MNIST

EMNIST CIFAR-10
0

20

40

60

80

100

T
es

t A
cc

ur
ac

y
(%

) Naive
(Upper) ACK,
w/o Failure
VersatileFL

(b) Different datasets

0 1 2 3 4 5 6 7 8 9 10

of Epochs

0

20

40

60

80

100

T
es

t A
cc

ur
ac

y
(%

)

Naive on CNN
VersatileFL on CNN

(c) Different model of a convolutional network

Fig. 8. Test accuracy of various learning settings

Dev3

Dev1

Dev2
Dev6

Dev5
Dev4

UPDN

(a) Device distribution

0 1 2 3 4 5 6 7 8 9 10

of Epochs

0

20

40

60

80

100

T
es

t A
cc

ur
ac

y
(%

)

0

1

2

3

T
ra

in
 L

os
s

Test Accuracy
Train Loss

(b) Test accuracy

Fig. 9. Validation in a real-world wireless testbed

off performance considering both accuracy and cost compared
to r-TX. Our scheme enables training even with the partially
delivered data. As another interesting result, VersatileFL shows
competitive inference accuracy, compared to ACK, achieving
a similar performance with the wired connection using the
excessive transmission cost, compared to ours.

We validated VersatileFL in a relatively poorer network
environment in Fig. 8(a), compared to 1) Naive without
recovery mechanisms; 2) PipeDream [16]: a federated learning
with vertical model parallelism in wireless network scenarios;
and EdgePipe [10]: a distributed learning designed for wireless
edge devices. We verified that our maintenance scheme plays
a key versatile role in volatile learning environments, outper-
forming other distributed learning in wireless networks. Inter-
estingly, VersatileFL also outperforms EdgePipe in the aspect
of the learning speed, by means of our sub-optimal training
with the saved gradients against the broken propagation.

We verified the feasibility of VersatileFL under volatility to
train various datasets with MNIST, Fashion-MNIST, EMNIST,
and CIFAR-10. As illustrated in Fig. 8(b), since the horizontal
model under the network fluctuation is collapsed even with
single disconnection, VersatileFL becomes quickly fragile both
in learning and inference across all of dataset. However, our
maintenance scheme makes learning viable up to 85.63 %,
73.30 %, 53.89 %, and 30.45 %. Taking a closer look, under
perfect data delivery without network failures, ours achieves
almost similar performance with a factor of 0.91, 0.87, 0.71,
and 0.75, respectively. It means that VersatileFL keeps stable
learning against unexpected network variations.

From Figs. 7 and 8(b), it is obvious that the learning speed
or quality of the federating learning in an ideal environment
without any propagation failures outperforms those of ours.
However, as pointed out in Fig. 7, in the volatile wireless
medium, excessive transmissions are required to meet the
similar performance in case of the wired stable connectivity.
As a trade-off between the learning performance and the com-

0 1 2 3 4 5 6

of Epochs

0

20

40

60

80

100

T
es

t A
cc

ur
ac

y
(%

) Link change

Static
Naive
Only long term
VersatileFL

(a) Long-term link connectivity variation
of Dev. 2

2 3 4 5 6

of Epochs

0

20

40

60

80

100

T
es

t A
cc

ur
ac

y
(%

) Node failure

VersatileFL (Unexpected)
VersatileFL (Expected)
Only long term

Static
Naive

(b) Long-term failure, where the
Dev. 4 is malfunctioning

Fig. 10. Runtime rearrangement dynamics when the network configurations
are varied at epoch 2

munication overhead, VersatileFL offers a reliable yet efficient
way considering both performance and resource budget.

We validated the efficacy of the maintenance scheme based
on a different neural network model of convolutional neural
network (CNN). We constructed a simple CNN architecture
consisting of one convolutional layer and one pooling layer in
front of the four dense layers. As illustrated in Fig. 8(c), Naive
failed to proceed the learning, whereas VersatileFL achieved
relatively high stable performance, reaching up to 80 %. It
implies that our maintenance scheme against the learning pass
failures has indeed helped various neural network models
to make efficient and stable progress via runtime versatile
learning and model rearrangement.

We verified VersatileFL in a real-world testbed. We used
six TelosB motes with IEEE 802.15.4 wireless radio over the
RoI of 20 × 20m2 in Fig. 9(a). The average PRR of 1,000
packets in the network is measured to be 71.62 %. As shown in
Fig. 9(b), VersatileFL achieves stable learning with more than
80 % accuracy with Fashion-MNIST. It means that VersatileFL
is validated in real-world wireless radio environments.
B. Maintenance against Long-Term Network Dynamics

For rearrangement, the management window w, is one
epoch (i.e., 600 steps). Regarding the credibility-related pa-
rameters, α is set to 0.9, and the Cthres is set to 0.7767,
which is the overall averaged PRR in the initial network setup.
It means that we start adjusting the model when the runtime
connectivity is different from the given network status.

We examined how VersatileFL monitors and survives
against long-term variations in Fig. 10. At epoch 2, we varied
the network condition of partial links, where the link connec-
tivity from all devices to Dev. 2 and from Dev. 2 to all devices
are deteriorated from the exponent of 3.2 to 6.0, in Fig. 10(a)
and device malfunctioning in Fig. 10(b). In both results,
our surveillance system records the history, and it observed
that some network variations occurred during epoch 2. It is

0 1 2 3 4 5 6 7 8 9 10

of Epochs

0

20

40

60

80

100

T
es

t A
cc

ur
ac

y
(%

) Link change Node failure Node inflow

Static
Naive
VersatileFL
w/o management
VersatileFL

Fig. 11. Stable learning against short-term and long-term network fluctuations,
where network variations occur at the red circled points

interesting to observe that at epoch 3, the credibility measure
internally detects the severely degraded network condition, and
VersatileFL steadily recovers the learning path through the
model arrangement. Another interesting point is that if the
runtime model arrangement is augmented with the short-term
link failure backup scheme, it leads to even faster restoration.

We also investigated the recovery performance depending
on the type of device failures in Fig. 10(b): 1) Unexpected:
a device can malfunction unexpectedly, and thus the trained
submodel is all lost; 2) Expected: a device can be aware of its
vitality, and the trained parameters are passed to other devices
before failure. Intuitively, the unexpected failure requires a
submodel retraining from the beginning, spending more time
to recover a valid learning model. Although the learned
parameters are missing, our backup scheme provides a way to
restore a valid model both in expected and unexpected cases.

We investigated how VersatileFL adapts to the dynamic
network change, in Fig. 11. The intermittent link fluctuates
all the time throughout the training, and the partial links and
a single node deteriorate at epoch 2 and epoch 5, respectively.
We also compared to VersatileFL without management, which
is same as applying Naive to the VersatileFL-based trained or
recovered model after each network variation outbreak. With-
out any failure-against management, the existing deep learning
frameworks cannot survive under hostile environments from
the beginning. It implies that although we already construct
the model using VersatileFL, further perpetual management
is essential. At worst, the training process is totally blocked
only with single device malfunctioning. However, VersatileFL
keeps almost the same training performance compared to
Static even with not only intermittent links volatility but also
long-term changes. Moreover, when a single node joins at
epoch 8, VersatileFL embraces the newly added resource and
hands over a partial model to the device. With the relaxed
resources, we keep stable learning and inference, while each
device takes charge of the less workload.

VII. CONCLUSION

We have presented VersatileFL, a novel deep learning
framework under volatile wireless networks. To solve the
short-term and long-term volatility problem, we suggest two
maintenance schemes: 1) versatile distributed learning for the
short-term fluctuation; and 2) runtime rearrangement for the
long-term network failure. First, to enable learning under
intermittent link disconnection, we approximate the missing
intermediate values in both forward and backward passes by

ignoring the unknown signals or substituting the previous
measure. We further propose a model adjustment by diagnos-
ing the runtime connectivity and rearranging the sub-model
shards in proportion to the credibility of each worker. We
have demonstrated that our volatile distributed learning makes
distributed training resilient under link fluctuations. Moreover,
our recovery scheme of model rearrangement captures the
variation in network configurations and adaptively improves
the model along with the runtime condition.

For future work, it would be interesting to combine data
parallelism with our model parallelism-driven edge learning
in a hybrid manner. Depending on the degree of priority and
importance between computation resource and data generation,
we may discover a more dynamic practical way to perform
distributed learning in the edge network setting.

REFERENCES

[1] L. Liu, J. Zhang, S. Song, and K. B. Letaief, “Client-edge-cloud
hierarchical federated learning,” in ICC 2020 - 2020 IEEE International
Conference on Communications (ICC), 2020, pp. 1–6.

[2] H. Sun, S. Li, F. R. Yu, Q. Qi, J. Wang, and J. Liao, “Toward
communication-efficient federated learning in the internet of things with
edge computing,” IEEE Internet of Things Journal, vol. 7, no. 11, pp.
11 053–11 067, 2020.

[3] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B. Catan-
zaro, “Megatron-lm: Training multi-billion parameter language models
using model parallelism,” arXiv preprint arXiv:1909.08053, 2019.

[4] J. Lee, J. Cho, and H. Lee, “Stitchnet: Distributed on-device model
partitioning over edge devices under volatile wireless links,” IEEE
Access, vol. 10, pp. 110 616–110 627, 2022.

[5] M. Chen, D. Gündüz, K. Huang, W. Saad, M. Bennis, A. V. Feljan,
and H. V. Poor, “Distributed learning in wireless networks: Recent
progress and future challenges,” IEEE Journal on Selected Areas in
Communications, 2021.

[6] M. Chen, H. V. Poor, W. Saad, and S. Cui, “Wireless communications
for collaborative federated learning,” IEEE Communications Magazine,
vol. 58, no. 12, pp. 48–54, 2020.

[7] S. Pal, E. Ebrahimi, A. Zulfiqar, Y. Fu, V. Zhang, S. Migacz, D. Nellans,
and P. Gupta, “Optimizing multi-gpu parallelization strategies for deep
learning training,” IEEE Micro, vol. 39, no. 5, pp. 91–101, 2019.

[8] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and
L. Tang, “Neurosurgeon: Collaborative intelligence between the cloud
and mobile edge,” ACM SIGARCH Computer Architecture News, vol. 45,
no. 1, pp. 615–629, 2017.

[9] Z. Yang, M. Chen, W. Saad, C. S. Hong, and M. Shikh-Bahaei, “Energy
efficient federated learning over wireless communication networks,”
IEEE Transactions on Wireless Communications, vol. 20, no. 3, pp.
1935–1949, 2020.

[10] J. Yoon, Y. Byeon, J. Kim, and H. Lee, “Edgepipe: Tailoring pipeline
parallelism with deep neural networks for volatile wireless edge de-
vices,” IEEE Internet of Things Journal, 2021.

[11] J. Chen, X. Pan, R. Monga, S. Bengio, and R. Jozefowicz, “Revisiting
distributed synchronous sgd,” arXiv preprint arXiv:1604.00981, 2016.

[12] D. Gong, Z. Zhang, Q. Shi, A. van den Hengel, C. Shen, and Y. Zhang,
“Learning deep gradient descent optimization for image deconvolution,”
IEEE transactions on neural networks and learning systems, vol. 31,
no. 12, pp. 5468–5482, 2020.

[13] L. N. Smith, “A disciplined approach to neural network hyper-
parameters: Part 1–learning rate, batch size, momentum, and weight
decay,” arXiv preprint arXiv:1803.09820, 2018.

[14] M. D. Zeiler, “Adadelta: an adaptive learning rate method,” arXiv
preprint arXiv:1212.5701, 2012.

[15] H. H. Yang, Z. Liu, T. Q. Quek, and H. V. Poor, “Scheduling policies
for federated learning in wireless networks,” IEEE transactions on
communications, vol. 68, no. 1, pp. 317–333, 2019.

[16] D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri, N. R. Devanur,
G. R. Ganger, P. B. Gibbons, and M. Zaharia, “Pipedream: generalized
pipeline parallelism for dnn training,” in Proceedings of the 27th ACM
Symposium on Operating Systems Principles, 2019, pp. 1–15.

