
8906 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 5, 1 MARCH 2024

COOL: Conservation of Output Links for Pruning
Algorithms in Network Intrusion Detection

Thi-Nga Dao and HyungJune Lee , Member, IEEE

Abstract—To reduce network intrusion detection latency in
a high volume of data traffic, on-device detection with neuron
pruning has been widely adopted by eliminating ineffective con-
nections from a densely connected neural network. However,
neuron pruning has a serious problem called output separa-
tion in which some parts of neurons can easily be pruned in
the middle and become isolated from the rest of the network.
To this end, we introduce a solution called the conservation
of output links (COOL) pruning method that iteratively pre-
serves a set of effective connections to avoid neuron isolation.
We first evaluate COOL on MNIST and CIFAR-10 data sets as
well as programmable networking devices, such as P4-supported
switches. The experimental results show that COOL outperforms
existing methods in terms of both detection time and classifica-
tion accuracy, especially in extremely sparse networks. Compared
to three representative pruning methods, our COOL-based clas-
sification model performs at least 25% more accurately with
the upper bound for the pruning probability. To further dis-
play the effectiveness of COOL-based intrusion detection, we
formulate a novel detection time minimization problem by assign-
ing suitable detection models for switches in Internet of Things
(IoT) under performance requirements and resource limitations.
The experimental results demonstrate that our COOL algo-
rithm is particularly useful for delay-critical and high-traffic
applications.

Index Terms—Delay minimization, intrusion detection, output
isolation, programmable data plane, weight pruning.

I. INTRODUCTION

THE Internet of Things (IoT) allows a massive and
unprecedented amount of data to be exchanged [1], [2],

[3], [4], making it an attractive environment for attackers
and hackers [5], [6], and network attacks keep increasing
in both number and volume, posing a dangerous threat to
IoT. Therefore, it is crucial to ensure networks’ security and
privacy. A network intrusion detection system (NIDS) [7],

Manuscript received 11 June 2023; revised 17 September 2023; accepted
27 September 2023. Date of publication 2 October 2023; date of current
version 21 February 2024. This work was supported in part by the Vietnam
National Foundation for Science and Technology Development (NAFOSTED)
under Grant 102.02-2020.06, and in part by the Institute of Information and
Communications Technology Planning and Evaluation (IITP) Grant funded by
the Korea Government (MSIT) through the Artificial Intelligence Convergence
Innovation Human Resources Development (Ewha Womans University) under
Grant RS-2022-00155966 and through the Artificial Intelligence Innovation
Hub under Grant 2021-0-02068. (Corresponding author: Thi-Nga Dao.)

Thi-Nga Dao was with the Faculty of Radio-Electronic Engineering, Le
Quy Don Technical University, Hanoi 1000, Vietnam. She is now with the
Department of Computer Science and Engineering, Ewha Womans University,
Seoul 03760, Republic of Korea (e-mail: daothinga.mta@gmail.com).

HyungJune Lee is with the Department of Computer Science and
Engineering, Ewha Womans University, Seoul 03760, Republic of Korea.

Digital Object Identifier 10.1109/JIOT.2023.3321299

which can early detect and respond to network threats, is
a well-known and effective security solution. To deal with
the increasing amount of exchanged data, there is a need for
NIDS with low-detection delay and high-detection accuracy.
Moreover, designing an efficient yet robust detection model
feasible at low-end devices becomes important at the edge
side.

In network security models [8], [9] traffic is required to
transmit to external devices for management, which causes a
long detection delay and slow response to network threats. To
deal with the problem of large detection time, detection models
are usually implemented on edge devices (e.g., switches) that
are located close to IoT devices [10], [11], [12], [13]. However,
these devices usually have limited computing and memory
resources compared to fog or cloud devices. Therefore, for the
edge layer, the classification model should have a lightweight
yet effective architecture with low-model complexity.

Recently, neural networks (NNs) have emerged as an
advanced machine learning (ML) technique with high-
classification accuracy. However, the fact that NNs require
a large number of floating-point operations and possibly
complex activation functions raises two problems: 1) long
detection delay and 2) difficulty executing on edge devices.
Therefore, a simplification method, such as neuron prun-
ing [12], [14], [15], [16], [17], [18], [19], [20], [21], [22],
[23], [24], memory reduction [25], [26], [27], and operations
simplification [28], [29], [30], is needed to reduce the model
complexity of the NN-based models.

To lessen the network complexity, a well-known solu-
tion called neuron pruning [12], [14], [15], [16], [17], [18],
[19], [20], [21], [22], [23], [24], [31], [32] with three
phases—learning a fully connected (FC) network, removing
the weakest connections, and retraining a pruned network—is
considered. However, neuron pruning may cause output isola-
tion where at least one output unit has no link to the previous
hidden layer after the second phase of connection removal.
Since the isolated output neuron, which has no synaptic path
from input features, cannot be updated during the third phase,
the performance of the pruned model deteriorates significantly.
The output isolation problem occurs more frequently when
increasing the pruning rate, thus considerably lowering the
classification performance. The only explanation offered by
existing work is that the lower performance is due to the
lack of remaining neurons or connections. To the best of our
knowledge, no existing studies recognized the output isola-
tion problem and our work is the first attempt to address this
issue. One related problem reported in the literature is layer

2327-4662 c© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Ewha Womans Univ. Downloaded on February 28,2024 at 15:26:54 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-1859-2246
https://orcid.org/0000-0003-4655-4298

DAO AND LEE: COOL: CONSERVATION OF OUTPUT LINKS FOR PRUNING ALGORITHMS 8907

collapse in which connections between two consecutive lay-
ers are completely removed and all network parameters are
untrainable [33]. Unlike layer collapse, only connections to
separated output units are not learned in the output separa-
tion problem. Layer collapse is essentially an extreme case of
output isolation with regard to the position of untrained param-
eters, and output isolation is a more common phenomenon
than layer collapse.

To avoid the output isolation issue, we propose a method,
called conservation of output links (COOL) pruning that
ensures that all output neurons have at least one synaptic flow
to the input layer in the pruned model. In the second phase, if
the output isolation problem exists after removing connections
with the lowest score, the pruning mask matrices are modified
in a bottom-up manner starting from the last hidden layer to
the input layer. This modification is terminated when no out-
put neurons are quarantined. It should be noted that COOL
can be used with any scoring metric since any weight pruning
methods can suffer from the output isolation problem.

We introduce a novel optimization problem to minimize
the detection delay of NIDS. Switches are assigned to clas-
sify network traffic by using one or more intrusion detection
models based on performance requirements, such as classifi-
cation accuracy and completion ratio, and available resource
constraints. To maximize the amount of traffic to be clas-
sified, packets from switches that run out of resources can
be forwarded to other resource-rich switches. However, since
packet offloading can raise the high-transmission cost, we
limit the amount of traffic that should be exchanged in the
network for intrusion detection. We find optimal solutions for
the optimization problem in two cases: 1) with and 2) without
the COOL pruning. The experimental results show that the
COOL-based detection model achieves a lower average intru-
sion detection time in IoT and allows many more parameter
sets with a feasible solution.

We evaluate the COOL pruning algorithm and compare
it with three other pruning algorithms. We conduct experi-
ments on simulated programmable switches using a program-
ming language called P4 [34] to collect the detection delay
and classification metrics. The performance results show the
effectiveness of our COOL pruning algorithm in terms of con-
serving accuracy while reducing detection time compared to
existing methods. For example, when 60% of connections in
fully dense layers are removed, the proposed method achieves
a 20% reduction in detection delay with only a 1% drop in
accuracy compared to the FC model.

The contributions of this work are listed below.
1) We analyze the output isolation problem in conventional

weight pruning methods and derive the closed-form
expression of the lower bound isolation likelihood that
depends on network parameters and pruning rate.

2) The COOL pruning algorithm avoids the output iso-
lation problem by preserving the strongest connection
for each neuron and therefore produces higher accuracy,
especially with an extremely sparse model.

3) We introduce the lightweight NIDS incorporating the
COOL pruning method to reduce model complexity and
detection delay.

4) Using the programmable data plane simulator, we eval-
uate the COOL-based intrusion detection model and
compare it to other methods, which shows that the
former produces comparable performance to the latter
while considerably reducing detection delay.

5) To further evaluate the COOL method, we formulate
a novel optimization problem that minimizes detection
time under performance requirements and resource con-
straints, which shows the COOL scheme reduces the
detection time and enables more traffic to be classified.

The remainder of this article is structured as follows.
Section II reviews related studies in the literature, and
Section III describes the network system as well as network
assumption. Then, the intrusion detection model based on the
COOL pruning algorithm is introduced in Section IV followed
by the detection time minimization strategy in Section V. The
performance is subsequently evaluated in Section VI to prove
the effectiveness of our proposal. Finally, we draw conclu-
sions regarding this work and suggest possible future studies
in Section VII.

II. RELATED WORKS

In this section, we first summarize and analyze the draw-
backs of previous pruning schemes. Then, we compare existing
studies of on-network classification for network intrusion
detection with our proposed architecture.

A. Pruning Algorithms

In traditional pruning algorithms, the scoring criterion is a
salient factor in determining weak connections in the network.
For example, Chandakkar et al. [14] and Han et al. [15] used
the smallest absolute weight values as the scoring metric.
In [17], information from all second-order derivatives of the
error function was used to find pruned neurons. Meanwhile,
Molchanov et al. [16] removed a feature map based on the
loss change with the first-order derivative term. Yu et al. [18]
introduced a neuron importance score propagation algorithm
that measures the neuron score at a layer based on the score of
neurons in the succeeding layer and connections between these
two layers. Moreover, Luo and Wu [19] used an entropy-based
criterion to determine the importance of filters in convolutional
neural networks (CNNs). Hu et al. [20] computed the Average
Percentage of Zeros (APoZs) of neurons for a given data set
and eliminated neurons with high-APoZ values. In [21], ran-
dom pruning at initialization was evaluated and compared with
the FC network. In [22], neurons in a specific layer were
given importance scores that were backpropagated from out-
put to input and depended on the activation value of neurons
in the preceding layer and weight between the current layer
and preceding layer.

Conventional pruning methods sometimes face the criti-
cal problem of layer collapse [33] in which all connections
of a specific layer are completely removed. This problem
becomes more likely when the compression rate increases.
Since layer collapse leads the model to be untrained, the prun-
ing method should be designed to avoid this problem. For
example, Tanaka et al. [33] found that larger layers tend to

Authorized licensed use limited to: Ewha Womans Univ. Downloaded on February 28,2024 at 15:26:54 UTC from IEEE Xplore. Restrictions apply.

8908 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 5, 1 MARCH 2024

TABLE I
COMPARISON BETWEEN COOL AND RELATED PRUNING WORK

have lower scores than small layers due to the conservation
of synaptic saliency. Therefore, they applied iterative prun-
ing to avoid layer collapse by gradually reducing the size of
larger layers or reducing the gap between scores of layers.
Gupta et al. [35] and Lee and Yim [36] introduced a min-
imum threshold of weights or channels to be kept in each
layer to guarantee connections between layers.

In our work, we consider a related problem, output separa-
tion, which has no synaptic flow from an output neuron to the
input layer. Although the pruned network can still be trained,
the output isolation issue significantly reduces performance
since the parameters of one or more output units cannot
be updated during training. Note that methods in [33], [35],
and [36] focused on mitigating layer collapse, not output
separation. Hence, this article analyzes the output separa-
tion problem and provides a possible solution to the output
isolation problem.

As shown in Table I, we compare pruning methods based
on four different metrics: 1) the method’s pruning crite-
ria; 2) whether the method is probabilistic or deterministic;
3) whether the method is data aware or data agnostic; and
4) the method’s output isolation probability. Unlike other prun-
ing methods, the COOL algorithm can be used with any
weight-scoring metric. Weights are removed with a probability
in a probabilistic pruning algorithm, while weights with the
lowest scores are completely pruned in a deterministic pruning
algorithm. If weight scores are computed on a training data
set, a pruning algorithm is data-aware; otherwise, it is called
data-agnostic. We also summarize pruning algorithms’ output
isolation probability in the last column of Table I.

B. On-Device Classification for Network Intrusion Detection

Researchers have investigated on-network classification
using programmable switches for multiple applications [37],
[38], [39]. On-network classification is especially useful for
latency-critical applications thanks to the early response to
detected events. It has been proved that various ML tech-
niques can be executed in the data plane. In [37], four
different supervised and unsupervised methods consisting of
decision tree (DT), support vector machine (SVM), Naive
Bayes (NB), and K-means were implemented in both software
and hardware (NetFPGA). Specifically, a parser block acted
as a features extraction module and a match-action pipeline

served as a traffic classifier. The authors showed classification
performance at a full line rate on real-world data sets.

As embedding network security into programmable switches
enables packet processing at the line rate, it has received
considerable attention. Xavier et al. [39] developed a simple
and quite accurate DT-based framework that can be deployed
into the programmable switches and validated the framework
for an intrusion detection task using the BMv2 emulator and
Netronome SmartNIC board. The performance results show
high accuracy (above 95%) with little performance drop, even
for a large number of flows. Other on-network detection stud-
ies have focused on detecting a specific common attack [40],
[41], [42], [43]. For example, Musumeci et al. [40] developed
a distributed denial-of-service attack detection framework
assisted by ML techniques, such as SVM and random forest
(RF). This framework includes two main phases: 1) feature
extractor and 2) ML classifier. The P4 switch extracts nec-
essary packet features and sends them to an external device
for traffic classification. Unlike [40], we implement both fea-
ture extraction and intrusion detection on a programmable
data plane. Therefore, there is no delay caused by packet
transmission from the switch to the packet classifier.

To determine volumetric DDoS attacks, Ding et al. [41]
and Turkovic et al. [42] estimated flow cardinality based on
a count-min sketch, which is a probabilistic and memory-
efficient data structure in which a packet arrives at a pro-
grammable switch and then a flow key is extracted and fed
to multiple hash functions to compute register indices where
counters are stored. Friday et al. [43] introduced a P4-based
DDoS detection and mitigation scheme that can measure the
bandwidth used by various applications and monitor the traffic
rate of TCP connections, executing the tracking data rate in
the data plane via a Bloom filter. Our work differs from [40],
[41], [43], and [42] in the following two ways.

1) We consider the problem of classifying incoming traf-
fic into various classes, including normal and a specific
attack type. This is a more general problem that can help
operators to gain insights into intrusion behaviors.

2) We implement a more complex ML technique (i.e.,
NN) in a P4 switch to further improve classification
performance.

With the aim of building a lightweight intrusion detec-
tion model, Lei et al. [44] combined a magnitude pruning

Authorized licensed use limited to: Ewha Womans Univ. Downloaded on February 28,2024 at 15:26:54 UTC from IEEE Xplore. Restrictions apply.

DAO AND LEE: COOL: CONSERVATION OF OUTPUT LINKS FOR PRUNING ALGORITHMS 8909

Fig. 1. Overview of NIDS in IoT.

Fig. 2. Change in traffic rate in the IoT Korea data set.

algorithm and a deep NN consisting of 11 ReLU hidden
layers. Although they claimed that this reduced model com-
plexity while achieving strong classification performance, the
evaluated architecture was still heavy and difficult to deploy
in the data plane. To cope with this issue, we propose a
more lightweight COOL pruning-based detection architecture
with only one hidden layer that is suitable for programmable
switches. Moreover, the COOL pruning method can overcome
a problem raised by general pruning techniques (i.e., output
separation).

III. NETWORK SYSTEM

IoT networks consist of IoT devices, servers, and switches
that connect IoT devices and servers, as presented in Fig. 1.
Data traffic generated by IoT devices from various applica-
tions can be transmitted to servers via switches. Participating
switches are connected using an arbitrary network topology,
such as a bus, star, tree, ring, or mesh as shown in Fig. 1.
These switches are in charge of data traffic forwarding as
well as intrusion detection to ensure that only legal data are
forwarded.

It is assumed that IoT devices generate data periodically
or whenever they detect an event, such as a fire, a gas leak,
or smoke release. Hence, the data rate may vary considerably
over time. As an example, Fig. 2 demonstrates the changes
in data rate in the IoT Korea data set [45]. Specifically, we

measure the number of incoming packets per second at a
switch during nearly 1000 1-s periods. Generally, there is a
significant change in data rate in the time span. For exam-
ple, there are around 500 incoming packets per second in the
beginning, and this number can increase up to 2500 or drop
to nearly 0 throughout the experimental duration.

Since networking devices’ incoming data rate varies over
time, a switch’s detection model should be adapted accord-
ingly. Generally, model complexity is inversely proportional to
model performance. Therefore, when the data rate is low, the
switch can implement a complex detection model to achieve
high-classification performance. In contrast, with a high-traffic
rate, a simpler prediction model with low complexity should be
utilized to maximize the amount of data traffic to be examined.

To quickly detect and respond to network threats, we exe-
cute the traffic classification model on a programmable data
plane. More specifically, with data plane programmability,
we can easily add customized packet processing functions to
edge devices, thus significantly reducing detection delay. There
are multiple commercial programming edge devices, includ-
ing NetFPGA SUME, developed by Digilent [46] and Intel
Tofino2 [47]. When a data packet arrives at the input port, the
switch predicts the data label. According to [45], there are five
different traffic labels: 1) normal; 2) reconnaissance; 3) man-
in-the-middle; 4) denial-of-service; and 5) Botnet. Based on
the prediction output, the switch then takes an appropriate
action for this packet (e.g., forwarding the packet, dropping
the packet, or adding an alarm field in the packet header).

In our work, each programmable switch decides the detec-
tion model independently. Multiple factors should be taken
into account: the incoming data rate, available computing
resources, and accuracy and detection time of each detection
model. Note that there is a tradeoff between the traffic clas-
sification model’s accuracy and detection time. Specifically,
if using a model with high complexity, we can achieve high
accuracy with a sacrifice in detection time and vice versa.
Therefore, participating switches should carefully consider
these factors.

In the following section, we introduce a lightweight detec-
tion and classification model based on the COOL pruning
method. Then, in Section V, we propose an optimization
problem for minimizing detection latency to select a suit-
able model given constraints on computing resources and
classification performance.

IV. NIDS BASED ON THE COOL PRUNING METHOD

We aim to develop a timely and lightweight network
intrusion detection architecture by incorporating the detec-
tion model with a pruning method. In this section, we first
introduce the output isolation problem inherent in the weight
pruning method. Then, the pruning algorithm based on the
COOL is proposed to address the output isolation problem.
Finally, we present the traffic classification model on the
programming switch with the support of the COOL pruning
algorithm.

The training procedure of traditional pruning methods
requires three phases for the training procedure: 1) learning

Authorized licensed use limited to: Ewha Womans Univ. Downloaded on February 28,2024 at 15:26:54 UTC from IEEE Xplore. Restrictions apply.

8910 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 5, 1 MARCH 2024

(a) (b)

Fig. 3. Scores for links between the last hidden layer and output layer based
on (a) weight and (b) gradient metrics.

the FC model; 2) pruning unnecessary connections; and
3) retraining the pruned network. We define x, h, and y as the
vectors for the input, hidden, and output units, respectively.
In the first phase, parameters, including weights and biases,
are trained by minimizing the entropy-based loss function. In
the next phase, the trained weights with the lowest scores are
removed from the network in a layerwise manner. We define
the pruning rate pprune (0 ≤ pprune ≤ 1) as the ratio of the
number of removed connections to the total number of con-
nections of the FC layer. Assuming that connections between
two consecutive layers are pruned with the same ratio pprune,
then the pruning rate of the whole network is also pprune. To
present the connection state of a layer, a binary mask matrix is
used in which ones imply remaining links and zeros indicate
pruned flows. In the final phase, the remaining connections of
the pruned network are retrained, which is called fine-tuning.
The entropy-based loss function is still used for retraining. A
weight matrix is multiplied by a corresponding binary mask
matrix so that the pruned weights are not trained in this
phase.

However, some output neurons may not have any connec-
tions to the previous layer, which is an inherent limitation of
the weight pruning method called output isolation. Since iso-
lated output neurons have the same value for all samples, the
classification performance decreases significantly, especially
with a high-pprune value and few hidden units in the previous
layer. To gain insight into this issue, we first derive the lower
bound value for the probability of the output isolation problem
poi and then propose an algorithm that conserves connections
for output units to overcome this problem.

It is assumed that scores of links between two consecutive
layers are random numbers with a uniform distribution or there
is no specific order for connection scores. To substantiate our
assumption, we demonstrate scores of connections between
the output layer and the preceding layer when training a dense
NN to classify hand-written digits in the MNIST data set. Two
different scoring metrics are used, weight-based and gradient-
based, as shown in Fig. 3. The x-axis represents ten output
units, while the y-axis accounts for 32 hidden features. In this
example, connection scores with the weight-based metric are
more uniformly distributed than those with the gradient-based
metric, in which high scores focus on links to the outputs 6
and 9. Note that when scores are distributed uniformly in a spe-
cific range, the output isolation probability becomes the lowest
and achieves the lower bound. For our example in MNIST,

poi in Fig. 3(a) is lower than that in Fig. 3(b). Therefore, we
assume that scores of connections between the output layer
and the last hidden layer follow a uniform distribution and
derive the lower probability of an output isolation problem.

We define nk as the number of units in layer k with
0 ≤ k ≤ H + 1, where layer 0 denotes the input layer and
layer H + 1 is the output layer. Let nH+1 and nH denote
the number of output and hidden features in the second-
to-last layer, respectively. Then, the number of connections
between the hidden and output layers in the FC model is
nHnH+1. In the FC model, each output neuron has nH links
to the previous layer. Since the events of pruning connections
are independent, we compute the joint probability of remov-
ing all nH links as the product of probabilities of trimming
nH links. Thus, the probability that the first link is deleted
from the FC model after removing the paths with the low-
est scores is p1 = ([nHnH+1pprune]/nHnH+1) = (n′/n) where
n = nHnH+1 and n′ = npprune for simplification. The proba-
bility that the second link is trimmed is p2 = (n′ − 1/n − 1).
Similarly, the probability that the link nH is removed is
pnH = ([n′ − nH + 1]/n − nH + 1). Finally, the joint probabil-
ity that an arbitrary output neuron has no link to the preceding
hidden layer is

poi =
k=nH∏

k=1

pk = n′(n′ − 1
)(

n′ − nH + 1
)

n(n − 1)(n − nH + 1)
. (1)

We remove connections between two consecutive layers with
pruning rate pprune only, and we iteratively compute the prob-
ability of pruning one connection among nH connections to
derive the isolation probability of an arbitrary output neuron.

Fig. 4(a) shows the lower bound of poi when there are five
attack labels. nH+1 = 5 is taken from the IoT data set [45].
The number of hidden neurons varies from 6 to 30, and pprune
is set between 0.5 and 0.95 with a step size of 0.05. As shown
in Fig. 4, the output isolation probability increases as pprune
increases or nH decreases. For example, with six hidden units,
poi = 0.778 when pprune = 0.95 compared to only 0.013 when
pprune = 0.5. As pprune is less than 0.5, the poi value almost
reaches 0, which means the output isolation problem rarely
occurs. Since the poi value slowly increases with a low-pruning
probability and then shows exponential growth when pprune
becomes high, the poi graph is quite similar to an exponential
function. However, unlike an exponential function, which can
approach infinity, the upper bound value for poi is 1.

We also evaluate the output isolation probability with ten
traffic labels taken from the UNSW-15 data set [48]. As can
be seen in Fig. 4(b), with nH+1 = 10, the poi value is slightly
lower than that with nH+1 = 5, as there are more connections
between the output and the previous layers (n) in the FC model
when nH+1 = 10. Hence, with the same pruning probability,
it is less likely that all links to an output neuron are removed
in the pruned network.

To avoid the output isolation problem, we design the pruning
method in a bottom-up manner as follows. First, the max-
imum score value max(SH+1) of connections between the
second-to-last and the last layers is computed and the strongest
connection for each output neuron is conserved by setting

Authorized licensed use limited to: Ewha Womans Univ. Downloaded on February 28,2024 at 15:26:54 UTC from IEEE Xplore. Restrictions apply.

DAO AND LEE: COOL: CONSERVATION OF OUTPUT LINKS FOR PRUNING ALGORITHMS 8911

(a) (b)

Fig. 4. Lower bound for the output isolation probability when (a) nH+1 = 5 and (b) nH+1 = 10.

Fig. 5. Construction of pruned NN with conservation of output connections.

the score for this connection to max(SH+1). Similarly, for
connections between the third-to-last and the second-to-last
layers, we set the score of the strongest connection for each
remaining hidden neuron in layer H to max(SH). The proce-
dure continues until we trim unimportant links between the
input layer and the first hidden layer.

We define pmax as the maximum pruning probability to
ensure that each output neuron has at least one connection
to the previous layer. If pprune > pmax, it is impossible to
avoid the output separation problem. Considering connections
between layer k and k+1, the minimum number of remaining
paths to conserve nk+1 units is nk+1 and the maximum prun-
ing ratio at layer k is 1 − (nk+1/nknk+1) = 1 − (1/nk). Then,
pmax = mink(1 − [1/nk]).

We use a binary mask matrix Mk with the same size as the
weight matrix Wk to denote the pruning status of links from
layer k to the succeeding layer. For example, M1 in Fig. 5 is

M1 =
[

0 0 0 1
1 1 1 0

]T

. To check whether an output neuron is

Algorithm 1 COOL Pruning Algorithm
Input: Network architecture nk, 0 ≤ k ≤ H + 1 and
pruning rate
Phase 1: Train the FC model

1: Derive the score matrices for connections {S0, S1, ..., SH}
Phase 2: Prune connections with the lowest scores

2: k = H
3: while k ≥ 0 do
4: Initialize updated score matrix S′

k = Sk

5: lk : list of neurons in layer k with link to output layer
6: Compute max(Sk)

7: for i ∈ lk do � Modify Sk

8: tmp = Sk[:, i] � Extract a column of Sk

9: index = argmax(tmp)

10: tmpindex = max(Sk)

11: S′
k[:, i] = tmp � Updated score matrix

12: end for
13: Based on updated score matrix S′

k, remove weights
with lowest score in layer k to obtain mask matrix Mk

14: k = k − 1
15: end while

Phase 3: Re-train pruned model with mask matrices Mk

return The pruned model

isolated, matrix M with n0 rows and nH+1 columns is defined
as M = ∏H

k=0 Mk. If the value at row i and column j is 0
(Mi,j = 0), there is no synaptic flow from input feature i to
output neuron j. We define an isolation vector I with shape
(1, nH+1) as follows:

Ij =
n0∑

i=1

Mi,j, 1 ≤ j ≤ nH+1 (2)

where the jth element of I indicates the isolation status of out-
put unit j. Specifically, Ij = 0 implies that the output neuron j
has no connection path to the input layer.

Algorithm 1 presents our COOL pruning scheme to avoid
the isolation of output neurons. The network structure is
used as the input of Algorithm 1 with the number of input

Authorized licensed use limited to: Ewha Womans Univ. Downloaded on February 28,2024 at 15:26:54 UTC from IEEE Xplore. Restrictions apply.

8912 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 5, 1 MARCH 2024

features n0, the number of output neurons nH+1, and the num-
ber of units in hidden layers. Our three-phased pruning scheme
mostly differs from other pruning methods in the second phase.
After training an FC model in the first phase, we obtain the
score matrices for connections in the network {S0, S1, . . . , SH}.
Matrix Sk represents the score for connections between layers
k and k + 1; the shape of Sk is the same as that of connec-
tion weights Wk between these two layers. For example, if
layers k and k + 1 have nk and nk+1 units, respectively, then
Sk ∈ R

nk×nk+1 . Then, in the second phase, layer index k is ini-
tialized to the number of hidden layers H in line 2. We modify
the original score matrix Sk from lines 7 to 11 and save it to
the newly updated matrix S′

k. Specifically, each neuron in layer
k should have at least one strong link with a weight equal to
the maximum value of Sk, so that this link cannot be deleted.
After obtaining S′

k, we apply the weight pruning scheme to
layer k (line 13) and obtain the mask matrix Mk. Then, layer
index k is reduced by 1 (line 14) and score matrix modifica-
tion repeats until the input layer (k = 0). Finally, we fine-tune
the pruned model using the mask matrix Mk in the last phase.
The COOL algorithm is not dedicated to a specific scoring
metric but can be used for any weight scoring metric to avoid
the output isolation problem as shown in Fig. 5. Since the
maximum number of iterations needed for the second phase
of Algorithm 1 is the sum of the number of hidden units and
output neurons in the network, the algorithm complexity is
O(

∑H+1
k=1 nk) where nk is the number of units in layer k.

Note that since the P4 language only supports integer and
binary operations, we need to convert the trained network
parameters into integer values. Assuming that χ bits are used
to represent the fractional part of parameters, we now explain
how to compute binary output neurons for a simple NN with
one hidden layer in P4. W1 and b1 denote the trained weight
and bias float values of the hidden layer, respectively. Then,
the binary hidden vector hbin is derived as follows:

W1,bin = �W1 × 2χ	 (3)

Xbin = �X × 2χ	 (4)

b1,bin = �b1 × 22χ	 (5)

hbin =
{⌊

W1,binXbin+b1,bin
2χ

⌉
, if WbinXbin + bbin ≥ 0

0, otherwise
(6)

where the �	 notation denotes the round operation to the near-
est integer number. The binary output features ybin can be
computed similarly as follows:

ybin = W2,binXbin + b2,bin (7)

where W2,bin and b2,bin are the binary weight and bias
parameters between the hidden and output layers.

When the pruned network is fine-tuned, the parameters are
sent to programmable switches. Each switch computes the out-
put values y that represent the probability of traffic classes for
an incoming packet. Then, the packet is classified into the
label argmax(y). Depending on the classified label, we can
take different actions for this packet. For example, the packet
can be forwarded normally or dropped, or an alarm field can
be added to the packet header at the switch.

TABLE II
LIST OF MAIN NOTATION IN INTEGER LINEAR PROGRAMMING

FORMULATION

V. DETECTION TIME MINIMIZATION STRATEGY

The main objective is to minimize the average detection
time of packets classified by all switches in the network given
the constraints of accuracy requirement, completion ratio,
computing resource, and offloading cost. Table II presents the
main notation of the optimization problem. We assume that
the network has a set S of S switches and there are Ni pack-
ets per second purely forwarded to switch i. Switches are
in charge of forwarding incoming packets to the destination
and detecting any abnormal behaviors from incoming pack-
ets. Depending on the available computing resources, a switch
may ask a neighboring switch to perform the classification
task or accept to perform this task for nearby switches. We
define xik as the number of packets offloaded from switch k to
switch i. To reduce the offloading cost caused by packet trans-
mission between switches and to reduce the detection time,
we assume that a switch only asks neighboring switches to
perform packet classification when this switch has insufficient
computing resource. The hop count between switch i and k is
denoted by hik. The relationship between hik and xik as follows:

xik =
{

0, if hik > 1
≥ 0, otherwise.

(8)

The total number of packets generated in the network per
second is N = ∑S

i=1 Ni. Suppose that there are C possible
classification models and each switch needs to choose the
appropriate classification model for incoming packets. The
classification accuracy and detection time for model j are
denoted by Aj and Tj, respectively.

We define an integer assignment variable yij1 as the number
of packets that are purely forwarded to switch i and classi-
fied by model j at switch i. Meanwhile, the variable yij2 is
the number of packets that are offloaded to switch i from
nearby switches and classified by model j at switch i. Then,
the total number of packets classified by switch i using model j
is denoted by yij = yij1 + yij2.

Authorized licensed use limited to: Ewha Womans Univ. Downloaded on February 28,2024 at 15:26:54 UTC from IEEE Xplore. Restrictions apply.

DAO AND LEE: COOL: CONSERVATION OF OUTPUT LINKS FOR PRUNING ALGORITHMS 8913

The ILP can be formulated as follows:

min
S∑

i=1

C∑

j=1

(
yij1Tj + yij2

(
Tj + Thop

))
(9)

subject to

1

n

S∑

i=1

C∑

j=1

Ajyij ≥ areq (10)

n

N
≥ rreq (11)

n =
S∑

i=1

C∑

j=1

yij (12)

C∑

j=1

yijTj ≤ treq,i ∀i ∈ S (13)

treq,i ≤ 1 ∀i ∈ S (14)
S∑

i=1

S∑

k=1

xik ≤ creq, i �= k (15)

C∑

j=1

yij2 =
S∑

k=1

xik ∀i ∈ S (16)

yij = yij1 + yij2 ∀i ∈ S ∀j ∈ C (17)

yij ≤ 1

Tj
∀i ∈ S ∀j ∈ C (18)

C∑

j=1

yij1 ≤ Ni ∀i ∈ S (19)

n ≤
S∑

i=1

Ni (20)

0 ≤ yij1 ≤ Ni ∀i ∈ S ∀j ∈ C (21)

0 ≤ yij2 ∀i ∈ S ∀j ∈ C (22)

0 ≤ xik ≤ Nk ∀i ∈ S (23)
S∑

i=1

xik ≤ Nk. (24)

The objective in (9) is to minimize the classification delay
of packets by all switches in the network. Constraint (10)
ensures that the average classification accuracy exceeds a given
threshold value areq, while (11) and (12) guarantee the com-
pletion ratio requirement is met. Meanwhile, (13) and (14)
ensure that the total classification time switch i spends per sec-
ond is less than value treq,i with the maximum value of 1 s.
Inequation (15) limits the total number of offloaded packets
to reduce the transmission cost in the network. Finally, the
remaining equations and constraints indicate the feasible range
of variables under consideration.

VI. EXPERIMENTAL RESULTS

A. Network Setup

To evaluate the COOL pruning algorithm, we consider three
different data sets: 1) MNIST; 2) CIFAR-10; and 3) the IoT
data set [45]. Since the COOL algorithm can be used with

TABLE III
LABEL DISTRIBUTION OF IOT NETWORK INTRUSION DATA SET

Fig. 6. Network topology used to collect E2E delay.

any scoring criterion, the weight magnitude is selected as a
scoring metric, as its simplicity and effectiveness have been
proven in the literature. Using the MNIST and CIFAR-10 data
sets, we show the benefits of the proposed pruning algorithm
compared to some existing pruning methods. Then, the COOL-
based network intrusion detection model is evaluated using the
IoT data set. The samples in the IoT data set were collected
from a wireless network, including smart home devices (i.e.,
intelligent speakers and Wi-Fi cameras) and laptops as well
as smartphones. The data distribution of this data set with five
different traffic classes is shown in Table III. The normal and
Botnet data are major classes containing 58.82% and 34.76%
of the whole data set, respectively. The remaining three attack
types are the minority labels. We randomly divide the whole
data set into training and test sets. Network parameters are
trained using the training data, while the performance of the
evaluated model is measured on the test set only. The exper-
iments are conducted on a desktop PC with an Intel Core
i7 2.5-GHz CPU (with the Radeon R9 M370X 2048 MB and
Intel Iris Pro 1536-MB GPU support) and 16-GB RAM, which
is comparable to a normal or low-end switch specification.

To estimate the detection models’ detection delay, we con-
sider a network with two hosts and one programmable switch
that connects these hosts, as shown in Fig. 6. More specifi-
cally, the host h1 extracts data traffic from pcap traces of the
IoT data set and then sends data packets to the host h2 via
the switch. The switch is in charge of monitoring incoming
data by classifying the data packets into one of five different
traffic classes. A variety of classification models are imple-
mented in the switch using the P4 programming language. It is
assumed that we forward all packets from h1 to h2 to measure
the average end-to-end (E2E) delay of detection models under
consideration. In fact, the switch takes different actions for
incoming packets: forwarding, dropping, and adding an alarm
header to the packet. The network emulator Mininet [49] is
used to define the network topology, including the number of
hosts, switches, and network parameters (e.g., bandwidth and
link delay). The Python-based Library Scapy is used for packet
generation and transmission at h1 as well as a reception at h2.

Authorized licensed use limited to: Ewha Womans Univ. Downloaded on February 28,2024 at 15:26:54 UTC from IEEE Xplore. Restrictions apply.

8914 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 5, 1 MARCH 2024

(a)

(b)

(c)

Fig. 7. Comparison of pruning algorithms’ performance on MNIST and CIFAR-10. (a) NN with one hidden layer on the MNIST data set. (b) NN with two
hidden layers on the MNIST data set. (c) CNN with two dense layers on the CIFAR-10 data set.

To evaluate the proposed architecture, we consider different
performance metrics, including classification accuracy (per-
centage of correct predictions), false positive (FP) rate (rate
of normal labels misclassified as attack labels), false nega-
tive (FN) rate (rate of attack labels misclassified as normal
labels), and false interattack (FI) rate (rate of an attack type
misclassified as another attack type).

B. Comparison of Pruning Methods’ Performance on MNIST
and CIFAR-10 Data Sets

We selected three well-known and up-to-date
methods—gradient-based pruning [14], random pruning [21],
and LRP [22] pruning—for the performance comparison
using the MNIST and CIFAR-10 data sets. Fig. 7 shows
the classification accuracy of NN-based classifiers with the
pruning algorithms under consideration. Pruning methods
are evaluated with different levels of model complexity by
changing the number of hidden units and pruning rates. For
our experiments, we apply pruning algorithms to dense hidden
layers, and the number of hidden units is written below each
subfigure. For object classification in the CIFAR-10 data set,
we build a CNN with three convolutional layers of 128, 256,
and 256 3×3 filters followed by two fully dense hidden
layers. Dropout with a connection drop rate of 0.3 is used

for better generalization. In all pruning methods, accuracy
tends to degrade significantly when using a high-pruning
ratio. Among the four considered pruning methods, LRP and
our method can avoid output isolation. More specifically,
LRP removes unnecessary hidden neurons/channels from the
network. By ensuring that there is at least one neuron in
hidden layers, LRP can avoid output isolation. However, our
method outperforms LRP, especially when the pruning rate
approaches the upper bound pmax, due to the advantage of
weight pruning over neuron pruning in terms of the number of
remaining neurons. Both weight and neuron pruning methods
preserve the same number of connections; however, more
hidden neurons are generally conserved in weight pruning.
Therefore, more informative features can be propagated
through the network in weight pruning. Meanwhile, since
gradient and random pruning methods suffer from output
separation, they exhibit lower performance than LRP and
our algorithm. The performance gap is clearly shown with a
sparser model.

With the random and gradient pruning algorithms, one or
more output units can be isolated. When the output separation
problem arises, classification performance drops drastically,
as shown in Fig. 7. To gain insight into the performance
drop, Table IV compares the number of isolated output units
between pruning methods with various network architectures

Authorized licensed use limited to: Ewha Womans Univ. Downloaded on February 28,2024 at 15:26:54 UTC from IEEE Xplore. Restrictions apply.

DAO AND LEE: COOL: CONSERVATION OF OUTPUT LINKS FOR PRUNING ALGORITHMS 8915

TABLE IV
COMPARISON OF THE NUMBER OF ISOLATED OUTPUTS BETWEEN

PRUNING ALGORITHMS IN THE MNIST DATA SET

when the pruning rate is set to {0.8, 0.9, 0.95, pmax}. N denotes
no output separation with all considered pruning rates.
Otherwise, we provide the number of isolated output units for
corresponding pruning rates from 0.8 to pmax. For example,
when 64 and 32 hidden units are used at the first and sec-
ond hidden layers, there are two separate output units when
pprune is 0.95 and 0.969 in random pruning. There are also
some isolated output units in traditional gradient and random
pruning schemes. Since more connections are kept, the num-
ber of isolated units tends to decrease when a more complex
classification model is used.

C. Evaluation of Pruning-Based Model on Intrusion
Detection

First, we present learning curves of the COOL-based detec-
tion model on both training and validation sets with a pruning
rate of 0.8 in Fig. 8. The number of hidden units is set to 10.
There are two phases of parameter learning: 1) training the
FC model and 2) retraining the COOL-based model after trim-
ming unimportant connections. In the first phase, all network
parameters are learned from the scratch by minimizing the loss
function. Then, we eliminate 80% of the least significant con-
nections and retrain the remaining parameters. Thus, in both
phases, the loss curve gradually decreases while the accuracy
improves over epochs. We stop network training when there
is no improvement in classification accuracy on the validation
set for the last 20 epochs.

After parameter training, the performance of the COOL-
based model is considerably lower than that of the FC model
because the number of connections in the COOL-based model
is only one-fifth of that in the FC architecture, which greatly
affects traffic classification performance. Therefore, the classi-
fication accuracy of the pruned model (around 90%) is roughly
4.3% lower than that of the FC model (around 94.3%).

Tables V and VI show the performance of the proposed
architecture with various parameters consisting of the number
of hidden units n1, pruning rate pprune, and the number of bits
χ representing the input and model parameters. Specifically,
the number of hidden units varies from 5 to 15, the prun-
ing rate list is {0.2, 0.4, 0.6, 0.8, 0.9}, the χ value is set
to {6, 10, 16} bits. Bold numbers indicate the best-measured
performance. As can be seen in Table V, the performance
improves as n1 increases and pprune decreases. However, the
performance improvement is more evident when n1 changes
from 5 to 10 (e.g., classification accuracy gains nearly 1%

Fig. 8. Learning curves of the COOL-based intrusion detection model with
pprune = 0.8.

TABLE V
IMPACT OF n1 AND pprune ON PERFORMANCE OF THE

PROPOSED COOL-BASED MODEL

TABLE VI
IMPACT OF χ ON PERFORMANCE OF THE PROPOSED

COOL-BASED MODEL

with pprune = 0.2) rather than 10 to 15 (e.g., accuracy enhances
around 0.5% with pprune = 0.2). Since more hidden units result
in higher model complexity, n1 = 10 is selected as the default
value to reflect the tradeoff between model complexity and
classification accuracy.

Regarding the detection delay, Fig. 9 shows the effects of
the pruning rate with different values of n1. Clearly, the detec-
tion delay increases when more hidden units and a low value

Authorized licensed use limited to: Ewha Womans Univ. Downloaded on February 28,2024 at 15:26:54 UTC from IEEE Xplore. Restrictions apply.

8916 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 5, 1 MARCH 2024

TABLE VII
PERFORMANCE COMPARISON BETWEEN THE PROPOSED COOL-BASED MODEL AND EXISTING MODELS

Fig. 9. Effects of pruning rates on detection delay.

of pruning rate are used, as more operations need to be exe-
cuted. More specifically, the number of main operations (i.e.,
addition and multiplication) of the COOL-based model with
pprune is 2(n0n1+n1n2)(1−pprune) with one hidden layer. Since
the detection time is proportional to the number of main oper-
ations, the delay increases as n1 increases and pprune decreases.
Note that the relationship between detection time and the num-
ber of main operations is not linear because some operations
exist regardless of the values of n1 and pprune in the COOL-
based model. For example, after computing output features,
we need to compare the values of output units to find the
traffic label with the highest output value.

Table VI illustrates the impact of χ on the performance
of the COOL-based architecture. There is a significant
performance gain when χ changes from 6 to 10 bits compared
to a much slower improvement when χ increases from 10 to
16 bits. The resulting improvement when using more bits to
store model parameters can be clearly seen in all performance
metrics. Note that when χ changes from 6 to 10 bits, the
memory required to store parameters increases by a factor of
10/6 and performance gain can be achieved at a relatively high
rate (e.g., accuracy improves by 16.3%, FP drops by 25.2%,
and FI drops by 9% with pprune = 0.9). Therefore, we select
χ = 10 bits as the default value for our other experiments.

Now, we examine the impacts of pprune and n1 on the
average detection time of a packet for the proposed model
and compare its performance results with those of existing
models with different architectures (NB [50], SVM, DT [40],
and FC [51]) in Table VII. The detection time is collected

from a simulated programmable switch that runs on the desk-
top PC with Intel Core i7 2.5GHz CPU (with the Radeon
R9 M370X 2048 MB and Intel Iris Pro 1536 MB GPU sup-
port) and 16 GB RAM. Note that the FC layer is a type of
1-D CNN layer when the kernel size is set to the number of
input features. More advanced deep learning models like recur-
rent NNs and complex CNNs are not suitable to implement at
programmable switches. The detection delay is recorded five
times, and the average value is presented in this article. Among
the verified models, the NB-based scheme has the lowest clas-
sification accuracy of 45.71% because it uses only the source
and destination IP addresses as input features for detecting the
attack label although a single host can generate multiple dif-
ferent attack classes. Therefore, the NB-based model has the
lowest classification performance (i.e., accuracy, FP, and FI).
Among the evaluated models, the DT-based scheme produces
the second shortest delay (i.e., 0.456 ms) while attaining a rela-
tively high accuracy of 91.05%. Our COOL-based models with
pprune less than 0.9 are more accurate than three other existing
algorithms (SVM, DT, and FC w/o hidden layer) thanks to the
nonlinear and sufficient connections from the input features to
the output values. When pprune = 0.9, since we remove 90%
of connections compared to FC with one hidden layer, clas-
sification performance drops considerably. Despite achieving
the highest classification accuracy (95.22%), the FC model
with two hidden layers has the highest memory footprint for
network parameters, including weights and biases. Meanwhile,
the COOL-based model can reduce the memory footprint by
around pprune ∗100% compared to the FC model with one hid-
den layer. The COOL-based model achieves a balance between
performance metrics (i.e., classification accuracy and detection
delay). Recall that we designed the COOL-based model such
that less important connections are pruned from the FC model.
Since fewer operations are required to classify the network
traffic, the detection time can be reduced. However, we need
to sacrifice classification performance, especially when pprune
becomes large. If pprune is well selected, we can achieve a
much shorter detection delay without significantly sacrificing
classification performance. For example, when pprune = 0.6,
classification accuracy drops less than 1%, while detection
delay improved around 20% from 1.245 to 1.023 (ms).

To show the multiclass performance of the proposed
detection model, we present the confusion matrix of the
architecture with two hidden layers of ten ReLU units in

Authorized licensed use limited to: Ewha Womans Univ. Downloaded on February 28,2024 at 15:26:54 UTC from IEEE Xplore. Restrictions apply.

DAO AND LEE: COOL: CONSERVATION OF OUTPUT LINKS FOR PRUNING ALGORITHMS 8917

Fig. 10. Confusion matrix (left) and normalized confusion matrix (right) of
the COOL-based detection model on the IoT data set.

Fig. 10. Three categories (normal, DoS, and MitM) achieve
high accuracy, while performance for Botnet and reconnais-
sance is less than 50% because we used features that excel
at recognizing normal, DoS, and MitM classes. Specifically,
features consist of the linear sum, mean, and variance of
packet length and time elapsed between two consecutive pack-
ets. The average packet length of DDoS attacks is usually
higher than that of normal packets, while the average elapsed
time of MitM is usually higher than that of normal traffic.
To improve the accuracy of Botnet and reconnaissance cate-
gories, a new feature should be added. For example, traffic
with requests to know available services and traffic volume
from multiple sources to a given destination can be used to
recognize reconnaissance and Botnet, respectively.

D. Optimization of Detection Time

If we assume that there are 30 switches in a network with a
mesh topology and each switch is randomly connected to three
other switches, when an event is generated, a 2-MB packet is
sent to the server via networking switches. OR-Tools is used
to solve the optimization problem in two cases: 1) with (w/)
and 2) without (w/o) the COOL-based model. In the first case,
each switch can choose appropriate classification models from
the eleven models in Table VII. Meanwhile, the second case
consists of only five possible choices: 1) NB-based; 2) SVM-
based; 3) DT-based; 4) FC without a hidden layer; and 5) FC
with one hidden layer. We consider these two cases to exam-
ine how the COOL-based model can improve the detection
time of NIDS. Various parameters of the optimization problem
are evaluated, including accuracy requirement areq, transmis-
sion cost constraint creq, completion ratio requirement rreq, and
network speed. The one-hop delay Thop is set to 1 ms.

Fig. 11 presents the average detection delay of classified
packets in the network when the network speed changes from
1 to 3 GB/s (step size is 0.2), the completion ratio increases
from 0.5 to 1 (step size is 0.1), the accuracy requirement
is set to {90, 93, 94}, and the transmission cost constraint
is 1000 packets. For each accuracy requirement value, there
are a total of 66 combination sets between network speed
and completion ratio. We find the optimal solution for the
optimization problem and present the average detection delay
in Fig. 11. Note that the white boxes represent cases with no
feasible solution. As shown in Fig. 11, there are fewer sets
with feasible solutions as areq increases because fewer classi-
fication models can satisfy the higher accuracy requirement.

(a) (b)

(c) (d)

(e) (f)

Fig. 11. Impact of accuracy requirement on average detection time. (a) w/o
COOL, areq = 90%, (b) w/ COOL, areq = 90%, (c) w/o COOL, areq = 93%,
(d) w/ COOL, areq = 93%, (e) w/o COOL, areq = 94%, (f) w/ COOL,
areq = 94%.

For example, when areq = 90%, 64 out of 66 sets have feasible
solutions compared to only 30 sets when areq = 94% when
the COOL-based models are not used. Moreover, generally, the
number of feasible sets is inversely proportional to the network
speed and completion ratio. For instance, with areq = 94%,
the number of feasible sets increases from 0 to 5 when the
network speed decreases from 3.0 to 1.0 GB/s. In addition,
the COOL-based models can help to increase the number of
feasible sets; for example, with areq = 94%, there are 33 feasi-
ble sets when using COOL-based models compared to 30 sets
without COOL-based schemes. Fig. 11 suggests that it takes
less time to classify incoming traffic as the network speed
or completion ratio decreases. Since NIDS deals with fewer
packets, the average detection time can be reduced.

For each completion ratio value creq, there exists a specific
network speed value called upper bound network speed value
supper. If the network traffic has a higher speed than supper,
there is no feasible solution. For instance, when accuracy
requirement is set to 94%, supper = 2.8 GB/s with creq = 0.5
and supper = 1.4 GB/s with creq = 1. Similarly, for each
network speed value, we observe an upper bound value of
completion ratio cupper such that there exists a feasible solution
if the completion ratio is smaller than cupper. For example,
when areq = 94%, cupper = 0.5 with network speed 2.8 GB/s

Authorized licensed use limited to: Ewha Womans Univ. Downloaded on February 28,2024 at 15:26:54 UTC from IEEE Xplore. Restrictions apply.

8918 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 5, 1 MARCH 2024

(a) (b)

(c) (d)

Fig. 12. Impact of transmission cost constraint on average detection
time (ms). (a) w/o COOL, creq = 2000 (b) w/ COOL, creq = 2000 (c) w/o
COOL, creq = 6000 (d) w/ COOL, creq = 6000.

compared to cupper = 0.7 when the network speed drops to
2.0 GB/s.

When using the upper bound network speed value supper,
we record an optimal solution for the optimization problem.
Assuming that only the speed value is reduced and other
parameters are kept constant, the stored solution can be
used, and the average detection delay is almost similar to
the case of supper. Therefore, Fig. 11 shows that the average
delay when using the COOL-based model is around 0.475,
0.910, and 1.132 (ms) with areq =90%, 93%, and 94%,
respectively.

To further investigate the effects of the transmission cost
constraint on the detection system, we measure the average
detection delay when limiting the number of offloaded packets
to 2000 and 6000, as shown in Fig. 12. The network speed
changes from 1.5 to 3.0 GB/s with a step size of 0.3, while the
accuracy requirement increases from 90 to 94% with a step
size of 1. For this experiment, there are a total of 30 sets. If
the transmission cost constraint increases, there are more cases
with feasible solutions because neighboring switches can help
to classify more network traffic. For example, there are 15 out
of 30 feasible sets with creq = 2000 compared to 21 feasible
sets with creq = 6000 if using the COOL scheme. However, if
offloading packets to neighboring switches, it takes more time
to classify all incoming packets.

Table VIII compares the average detection delay in two
cases (i.e., with and without the proposed model) to show
the effectiveness of the COOL-based scheme with accuracy
requirement changes from 90% to 95%. The network speed
is set to 1 GB/s, the completion ratio is 1, and the transmis-
sion cost constraint is 1000. When areq is less than 91.5%, the
average delay is similar in the two cases because the DT-based
model with the second shortest delay of 0.476 ms is used to
classify the incoming packets. Recall that the DT-based model

TABLE VIII
DETECTION TIME WITH AND WITHOUT COOL

achieves 91.5% accuracy. When the accuracy requirement is
greater than or equal to 94.5%, there is no feasible solution
in either case, as the highest accuracy that can be achieved by
classification models on the IoT data set is 94.17% (FC with
one hidden layer). The COOL-based models can shorten the
average classification delay, especially with a high-accuracy
requirement value. The improvement gain gradually increases
with areq because the COOL-based model can yield competi-
tive classification accuracy with a shorter detection delay than
the FC scheme. Therefore, when areq is larger, the COOL-
based algorithm is used more frequently, which helps to reduce
the average detection time. For example, when areq is 94%,
the delay can be shortened by 6% from 1.204 to 1.132 (ms)
using the COOL-based model.

VII. CONCLUSION

In a pruning-based NIDS, synaptic connections to output
neurons may be lost, especially in a highly sparse model,
significantly reducing detection performance. To address this
problem, we design the COOL algorithm to conserve the most
significant connections for nonisolated neurons in the pruned
model. Thanks to the COOL, the COOL algorithm outper-
forms other weight-pruning methods in terms of classification
accuracy on various benchmark data sets and significantly
reduces detection delay compared to fully dense networks.
To further evaluate the COOL-based NIDS, we formulate
an optimization problem with the objective of minimizing
the average detection delay of traffic in the network under
constraints on overall performance and available resources.
Our experimental results show that more traffic can be man-
aged with a shorter detection delay in the intrusion detection
system with the support of the COOL algorithm. With the
aim of further reducing detection delay, we plan to embed
the COOL algorithm in the distributed detection architec-
ture in future works. New features should be added to the
classification model to improve multiclass performance. In
addition, the proposed COOL-based NIDS should be evalu-
ated in real-world environments to determine how it handles
real traffic.

REFERENCES

[1] J. Qi, P. Yang, G. Min, O. Amft, F. Dong, and L. Xu, “Advanced Internet
of Things for personalised healthcare systems: A survey,” Pervasive
Mobile Comput., vol. 41, pp. 132–149, Oct. 2017.

Authorized licensed use limited to: Ewha Womans Univ. Downloaded on February 28,2024 at 15:26:54 UTC from IEEE Xplore. Restrictions apply.

DAO AND LEE: COOL: CONSERVATION OF OUTPUT LINKS FOR PRUNING ALGORITHMS 8919

[2] D. Glaroudis, A. Iossifides, and P. Chatzimisios, “Survey, compari-
son and research challenges of IoT application protocols for smart
farming,” Comput. Netw., vol. 168, Feb. 2020, Art. no. 107037.

[3] R. Li, T. Song, N. Capurso, J. Yu, J. Couture, and X. Cheng, “IoT
applications on secure smart shopping system,” IEEE Internet Things
J., vol. 4, no. 6, pp. 1945–1954, Dec. 2017.

[4] L. D. Xu, W. He, and S. Li, “Internet of Things in industries: A
survey,” IEEE Trans. Ind. Informat., vol. 10, no. 4, pp. 2233–2243,
Nov. 2014.

[5] K. Y. Najmi, M. A. AlZain, M. Masud, N. Z. Jhanjhi, J. Al-Amri, and
M. Baz, “A survey on security threats and countermeasures in IoT to
achieve users confidentiality and reliability,” Mater. Today Proc., vol. 81,
pp. 377–382, May 2023.

[6] X. Liang and Y. Kim, “A survey on security attacks and solutions in the
IoT network,” in Proc. IEEE 11th Annu. Comput. Commun. Workshop
Conf. (CCWC), 2021, pp. 853–859.

[7] J. R. Vacca, Computer and Information Security Handbook. Amsterdam,
The Netherlands: Newnes, 2012.

[8] F. Erlacher and F. Dressler, “On high-speed flow-based intrusion detec-
tion using snort-compatible signatures,” IEEE Trans. Dependable Secure
Comput., vol. 19, no. 1, pp. 495–506, Jan./Feb. 2022.

[9] M. F. Umer, M. Sher, and Y. Bi, “Flow-based intrusion detection:
Techniques and challenges,” Comput. Security, vol. 70, pp. 238–254,
Sep. 2017.

[10] A. Ferdowsi and W. Saad, “Generative adversarial networks for dis-
tributed intrusion detection in the Internet of Things,” in Proc. IEEE
Global Commun. Conf. (GLOBECOM), 2019, pp. 1–6.

[11] R. Kumar, P. Kumar, R. Tripathi, G. P. Gupta, S. Garg, and
M. M. Hassan, “A distributed intrusion detection system to detect DDoS
attacks in blockchain-enabled IoT network,” J. Parallel Distrib. Comput.,
vol. 164, pp. 55–68, Jun. 2022.

[12] T.-N. Dao and H. J. Lee, “Stacked autoencoder-based probabilistic fea-
ture extraction for on-device network intrusion detection,” IEEE Internet
Things J., vol. 9, no. 16, pp. 14438–14451, Aug. 2022.

[13] Y. Wang, W. Meng, W. Li, Z. Liu, Y. Liu, and H. Xue, “Adaptive
machine learning-based alarm reduction via edge computing for dis-
tributed intrusion detection systems,” Concurrency Comput. Pract. Exp.,
vol. 31, no. 19, 2019, Art. no. e5101.

[14] P. S. Chandakkar, Y. Li, P. L. K. Ding, and B. Li, “Strategies for re-
training a pruned neural network in an edge computing paradigm,” in
Proc. IEEE Int. Conf. Edge Comput. (EDGE), 2017, pp. 244–247.

[15] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and con-
nections for efficient neural network,” in Proc. Adv. Neural Inf. Process.
Syst., 2015, pp. 1135–1143.

[16] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, “Pruning con-
volutional neural networks for resource efficient transfer learning,” 2016,
arXiv:1611.06440.

[17] B. Hassibi and D. G. Stork, “Second order derivatives for network
pruning: Optimal brain surgeon,” in Advances in Neural Information
Processing Systems, vol. 5, S. J. Hanson, J. D. Cowan, and
C. L. Giles, Eds. Burlington, MA, USA: Morgan-Kaufmann, 1993,
pp. 164–171.

[18] R. Yu et al., “NISP: Pruning networks using neuron importance score
propagation,” 2017, arXiv:1711.05908.

[19] J.-H. Luo and J. Wu, “An entropy-based pruning method for CNN
compression,” 2017, arXiv:1706.05791.

[20] H. Hu, R. Peng, Y.-W. Tai, and C.-K. Tang, “Network trimming: A data-
driven neuron pruning approach towards efficient deep architectures,”
2016, arXiv:1607.03250.

[21] S. Liu et al., “The unreasonable effectiveness of random pruning: Return
of the most naive baseline for sparse training,” in Proc. 10th Int. Conf.
Learn. Represent., 2022, pp. 1–22.

[22] S.-K. Yeom et al., “Pruning by explaining: A novel criterion for
deep neural network pruning,” Pattern Recognit., vol. 115, Jul. 2021,
Art. no. 107899.

[23] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning
filters for efficient ConvNets,” 2016, arXiv:1608.08710.

[24] H. Wang, Q. Zhang, Y. Wang, and H. Hu, “Structured probabilistic
pruning for convolutional neural network acceleration,” 2017,
arXiv:1709.06994.

[25] S. Wiedemann, K.-R. Müller, and W. Samek, “Compact and com-
putationally efficient representation of deep neural networks,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 31, no. 3, pp. 772–785,
Mar. 2020.

[26] K. Shirahata, Y. Tomita, and A. Ike, “Memory reduction method for
deep neural network training,” in Proc. IEEE 26th Int. Workshop Mach.
Learn. Signal Process. (MLSP), 2016, pp. 1–6.

[27] Y. Pisarchyk and J. Lee, “Efficient memory management for deep neural
net inference,” 2020, arXiv:2001.03288.

[28] M. Rusci, L. Cavigelli, and L. Benini, “Design automation for binarized
neural networks: A quantum leap opportunity?” in Proc. IEEE Int. Symp.
Circuits Syst. (ISCAS), 2018, pp. 1–5.

[29] T. Simons and D.-J. Lee, “A review of binarized neural
networks,” Electronics, vol. 8, no. 6, p. 661, 2019.

[30] H. Qin, R. Gong, X. Liu, X. Bai, J. Song, and N. Sebe, “Binary
neural networks: A survey,” Pattern Recognit., vol. 105, Sep. 2020,
Art. no. 107281.

[31] W. Li, X. Wang, H. Han, and J. Qiao, “A PLS-based pruning
algorithm for simplified long–short term memory neural network in
time series prediction,” Knowl.-Based Syst., vol. 254, Oct. 2022,
Art. no. 109608.

[32] S. Srinivas, A. Kuzmin, M. Nagel, M. van Baalen, A. Skliar, and
T. Blankevoort, “Cyclical pruning for sparse neural networks,” in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2022,
pp. 2762–2771.

[33] H. Tanaka, D. Kunin, D. L. Yamins, and S. Ganguli, “Pruning
neural networks without any data by iteratively conserving synap-
tic flow,” in Proc. Adv. Neural Inf. Process. Syst., vol. 33, 2020,
pp. 6377–6389.

[34] P. Bosshart et al., “P4: Programming protocol-independent packet pro-
cessors,” ACM SIGCOMM Comput. Commun. Rev., vol. 44, no. 3,
pp. 87–95, 2014.

[35] M. Gupta et al., “Is complexity required for neural network pruning? A
case study on global magnitude pruning,” 2022, arXiv:2209.14624.

[36] K. Lee and J. Yim, “Hyperparameter optimization with neural network
pruning,” 2022, arXiv:2205.08695.

[37] Z. Xiong and N. Zilberman, “Do switches dream of machine learning?
Toward in-network classification,” in Proc. 18th ACM Workshop Hot
Topics Netw., 2019, pp. 25–33.

[38] M. P. J. Kuranage, K. Piamrat, and S. Hamma, “Network traffic classifi-
cation using machine learning for software defined networks,” in Proc.
Int. Conf. Mach. Learn. Netw., 2019, pp. 28–39.

[39] B. M. Xavier, R. S. Guimarães, G. Comarela, and M. Martinello,
“Programmable switches for in-networking classification,” in Proc. IEEE
Conf. Comput. Commun., 2021, pp. 1–10.

[40] F. Musumeci, V. Ionata, F. Paolucci, F. Cugini, and M. Tornatore,
“Machine-learning-assisted DDoS attack detection with P4 language,” in
Proc. IEEE Int. Conf. Commun. (ICC), 2020, pp. 1–6.

[41] D. Ding, M. Savi, F. Pederzolli, M. Campanella, and D. Siracusa, “In-
network volumetric DDoS victim identification using programmable
commodity switches,” IEEE Trans. Netw. Service Manag., vol. 18, no. 2,
pp. 1191–1202, Jun. 2021.

[42] B. Turkovic, J. Oostenbrink, and F. Kuipers, “Detecting heavy hitters in
the data-plane,” 2019, arXiv:1902.06993.

[43] K. Friday, E. Kfoury, E. Bou-Harb, and J. Crichigno, “Towards a unified
in-network DDoS detection and mitigation strategy,” in Proc. 6th IEEE
Conf. Netw. Softwarization (NetSoft), 2020, pp. 218–226.

[44] M. Lei, X. Li, B. Cai, Y. Li, L. Liu, and W. Kong, “P-DNN: An effective
intrusion detection method based on pruning deep neural network,” in
Proc. Int. Joint Conf. Neural Netw. (IJCNN), 2020, pp. 1–9.

[45] H. Kang, D. H. Ahn, G. M. Lee, J. Do Yoo, K. Ho Park, and H. K. Kim,
Sep. 2019, “IoT network intrusion dataset,” IEEE Dataport. [Online].
Available: https://dx.doi.org/10.21227/q70p-q449

[46] F. Paolucci, F. Civerchia, A. Sgambelluri, A. Giorgetti, F. Cugini, and
P. Castoldi, “P4 edge node enabling stateful traffic engineering and
cyber security,” J. Opt. Commun. Netw., vol. 11, no. 1, pp. A84–A95,
2019.

[47] A. Agrawal and C. Kim, “Intel Tofino2—A 12.9 Tbps P4-programmable
Ethernet switch,” in Proc. IEEE Hot Chips 32 Symp. (HCS), 2020,
pp. 1–32.

[48] N. Moustafa and J. Slay, “UNSW-NB15: A comprehensive data
set for network intrusion detection systems (UNSW-NB15 network
data set),” in Proc. Mil. Commun. Inf. Syst. Conf. (MilCIS), 2015,
pp. 1–6.

[49] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop:
Rapid prototyping for software-defined networks,” in Proc. 9th ACM
SIGCOMM Workshop Hot Topics Netw., 2010, pp. 1–6.

[50] G. K. Ndonda and R. Sadre, “A two-level intrusion detection
system for industrial control system networks using P4,” in Proc.
5th Int. Symp. ICS SCADA Cyber Security Res. (ICS-CSR), 2018,
pp. 1–10.

[51] J. Shun and H. A. Malki, “Network intrusion detection system using
neural networks,” in Proc. 4th Int. Conf. Nat. Comput., vol. 5, 2008,
pp. 242–246.

Authorized licensed use limited to: Ewha Womans Univ. Downloaded on February 28,2024 at 15:26:54 UTC from IEEE Xplore. Restrictions apply.

8920 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 5, 1 MARCH 2024

Thi-Nga Dao received the B.S. degree in electri-
cal and communication engineering from Le Quy
Don Technical University, Hanoi, Vietnam, in 2013,
and the M.S. degree in computer engineering and
the Ph.D. degree in computer engineering from the
University of Ulsan, Ulsan, South Korea, in 2016
and 2019, respectively.

Since July 2019, she had been a Lecturer with
the Faculty of Radio-Electronic Engineering, Le
Quy Don Technical University. She is currently a
Postdoctoral Fellow with the Computer Science and

Engineering Department, Ewha Womans University, Seoul, South Korea. Her
research interests include machine learning-based applications in network
security, network intrusion detection and prevention systems, human mobility
prediction, and mobile crowdsensing.

HyungJune Lee (Member, IEEE) received the B.S.
degree in electrical engineering from Seoul National
University, Seoul, South Korea, in 2001, and the
M.S. and Ph.D. degrees in electrical engineering
from Stanford University, Stanford, CA, USA, in
2006 and 2010, respectively.

He joined Broadcom, San Jose, CA, USA, as a
Senior Staff Scientist for working on research and
development of 60-GHz 802.11ad SoC MAC. Also,
he worked for AT&T Labs, Atlanta, GA, USA, as
a Principal Member of Technical Staff with the

involvement of LTE overload estimation, LTE-WiFi interworking, and het-
erogeneous networks. He is currently a Professor with the Computer Science
and Engineering Department, Ewha Womans University, Seoul. His current
research interests include distributed learning and future wireless networks on
the IoT, fog computing, VANET, and machine learning-driven network system
design.

Authorized licensed use limited to: Ewha Womans Univ. Downloaded on February 28,2024 at 15:26:54 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

