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Abstract—Due to the outbreak of recent network attacks, it is
necessary to develop a robust network intrusion detection system
(NIDS) that can quickly and effectively identify the network
attack. Although the state-of-the-art detection algorithms have
shown quite promising detection performance, they suffer from
computationally intensive operations and large memory footprint,
making themselves infeasible to applications at the resource-
constrained edge devices. We propose a lightweight yet effective
NIDS scheme that incorporates a stacked autoencoder with a
network pruning technique. By removing a set of ineffective
neurons across layers in the autoencoder network with a cer-
tain probability based on their importance, a considerably large
portion of relatively nominal training parameters are reduced.
Then, the pruned and pretrained encoder network is used as-is
and is connected with a separate classifier network for attack type
inference, avoiding a full retraining from scratch. Experimental
results indicate that our stacked autoencoder-based classification
network with probabilistic feature extraction has outperformed
the state-of-the-art NIDSs in terms of attack detection rate.
Further, we have shown that our lightweight NIDS scheme has
significantly reduced the computational complexity throughout
the architecture, making it feasible to the edge, while maintain-
ing a similar attack type detection quality compared with its
original fully connected neural network.

Index Terms—Anomaly classification, feature extraction,
network intrusion detection system (NIDS), on-device Al

I. INTRODUCTION

ETWORK intrusion refers to any unauthorized activ-
Nities on a network, such as denial-of-service attacks,
backdoor attacks, brute-force attacks, which attempt to gather
private information of users or make network services inac-
cessible to its intended users [1], [2]. Recent studies show
that these network attacks have increasingly occurred in both
their frequency and traffic volume. In order to address the
network intrusion problem and to strengthen network security,
it is important to design an agile yet reliable network intrusion
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detection system (NIDS). The functionality of early detecting
the abnormal network behaviors and quickly responding to
the detected events is considered as an essential requirement
in most of the recent network devices.

As the recent Internet of Things (IoT) has imposed the
requirement of low response time and bandwidth usages,
machine learning-driven intelligent applications have been
brought to the edge, such as mobile devices, embedded sen-
sors or programmable network devices [3]. Applications that
can perform inference on the edge devices include on-device
services from face recognition, natural language processing to
network intrusion detection. In case of the NIDS, building an
efficient distributed detection model on resource-constrained
edge devices is a challenging problem. It requires a significant
latency reduction to take a responsive action against network
attacks for ensuring network security.

Taking advantage of state-of-the-art machine learning tech-
niques, the existing NIDSs mostly running on powerful
GPU-assisted machines [4]-[6] have achieved promising
prediction performance over real-world network traffic data
sets. Generally, supervised learning-based models are con-
structed with two separate phases: 1) feature extraction in
which a latent representation of input features are learned
and 2) classifier to identify its attack type. In efforts to
achieve computationally efficient performance, various fea-
ture extraction models including autoencoder (AE) [7] have
been employed with the deep neural network architecture.
However, even if the feature extraction has been applied, a
neural network can still contain numerous parameter weights.
Thus, it should be supported by substantial computation and
memory resources for its intensive computing operations,
making infeasible to edge network devices.

In this article, we propose a lightweight yet effective NIDS
scheme that incorporates a stacked AE with a network pruning
technique. The network pruning executes probabilistic feature
extraction and infers network attack types so that it can be
feasible to edge devices. Inspired by the fact that there exist
substantial parts of redundant connections in a trained network,
we perform a neuron pruning process. This process removes
relatively insignificant neurons and their edges for construct-
ing a compact AE architecture. To evaluate whether a neuron
is effective or not, we quantify an importance score for each
neuron. The score is calculated by taking into account the
correlation between the input and the output features on the
AE architecture as well as the classification label, and then a
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neuron gets pruned with a certain probability that is assigned
based on the rank of its score. By doing so, high dimen-
sional network traffic features are effectively extracted and
captured at a low dimensional feature space as the internal
representation.

By taking the pruned encoder part from the architecture
and connecting it with an additional classifier layer, we form
a new neural network for the attack classification purpose. We
reuse the intact pretrained encoder layers and train only the
classifier on the labeled data with attack types. Avoiding the
entire network training from scratch helps to get the NIDS
network ready for inference as early as possible, making it
practically feasible to the edge.

Previous, work on network intrusion detection generally
consists of two phases: 1) feature selection and 2) classifica-
tion [4], [5], [8], [9], similar to this work. Since these existing
NIDS often suffer from the high computation and execution
time overhead, several NIDS approaches have been evolved
with network simplication or sparsification via parameter
reparameterization [10], feature reduction [11], and neuron
pruning [12].

Some more general network simplication irrespective
of the NIDS context has long been investigated with
the following categories: neuron pruning [13]-[15], feature
reduction [16]-[19], and operation simplification [20]-[22].

More closely related to feature extraction and neuron prun-
ing, primarily considered in this work, Molchanov et al. [23]
have designed a pruning method that approximates the loss
change with the first-order derivative term upon trimming a
feature map. Han et al. [24] have proposed a pruning method
in which the edge connections with the smaller absolute weight
values are removed from the network. Yu et al. [25] have
introduced a neuron importance score propagation (NISP)
algorithm that measures the importance score of each neu-
ron and prunes one based on the backpropagation impact on
its prior neurons.

To the best of our knowledge, this work is the first to
implement an on-device multiclass classification of network
attack types using a stacked AE architecture with a proba-
bilistic neuron pruning approach. The main contributions can
be summarized as follows.

1) We propose an on-device NIDS with much fewer param-
eters, which allows to quickly detect abnormal network
behaviors as well as attack types, based on a stacked
pruned AE combined with a classifier network.

2) A lightweight probabilistic feature extraction method is
designed with constrained memory size and computing
capacity for edge devices.

3) Experimental results with different pruning rates over
real-world data sets demonstrate that our proposed algo-
rithm significantly reduces the model size, while achiev-
ing the competitive performance in both supervised and
unsupervised tasks.

II. SYSTEM MODEL

As the Internet grows exponentially with a huge number
of edge and IoT devices, botnet malware often use them as

14439

intermediate hosts to perform distributed massive attacks to
certain network devices, and sometimes the entire network.
Moreover, the attack patterns become more diversified and
intelligent based on the recent advanced machine learning
techniques. Analyzing real-time network traffic traces reliably
and promptly is a challenging, but essential task, which is
required at modern edge devices.

We address the problem of network intrusion detection
at edge devices with constrained computation and memory
capacity. We aim to design a lightweight deep neural network
architecture that can effectively learn a nonlinear relationship
between network traffic features and attack types with the
small learning and inference overhead.

In order to handle large scale network traffic traces that
have embedded numerous underlying features, at edge devices,
feature extraction offers an effective way of discovering sta-
tistically significant features. AE is a neural network that can
learn efficient representation of the input data by compressing
it into the latent code, and thus can be used as a powerful
feature detector.

This work incorporates an AE model as the underlying fea-
ture detector on network attack traces. To significantly reduce
the model size in terms of computation and memory consump-
tion, we integrate a neuron pruning approach with the AE
architecture.

To formally define the problem of this work, we first intro-
duce necessary notations for the AE model. Let x and W
denote the input data and the weight matrices. Note that W
consists of a set of weight matrices, and the elements in a
weight matrix indicates the connection levels between two
consecutive layers. The output layer f(x, W), which is the
reconstructed data, can be expressed as a function of the input
data and the weight matrices. To indicate the architecture of
the pruned network, the binary mask matrices M, which has
the same size as W, are used. At each matrix in M, a value of
1 implies a valid connection between two corresponding units,
whereas a value of 0 indicates a pruned connection. Then, the
output layer in the pruned AE is represented as f(x, W © M),
where © denotes the element-wise multiplication.

We aim to find a pruned AE model that minimizes the recon-
struction loss, while meeting a target pruning rate€ pprupe, as
follows:

min |f(x, WOM) — x|
M

subject to:  puy < 1 — Pprune

where pps is the mean value of binary mask matrices M. For
example, if pprune is set to 0.4, wpr should be at most 60% of
the elements that should be set to 1 in M.

Then, the problem of deriving a lightweight stacked
AE-based feature extraction model can be decomposed into
three stages: 1) score estimation; 2) pruning rate estimation;
and 3) pruned network construction, as illustrated in Fig. 1.
The first stage of score estimation is to extract network traf-
fic features and quantify the intercorrelation among them. At
the second stage, after computing a pruning probability of the
input feature, the neuron-based pruning probability is inferred.
At the final stage, the extracted features as the output of
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Fig. 1. Our proposed lightweight network intrusion detection architecture
with a stacked AE-based probabilistic feature extraction.

the pruned AE network, are fed into the input of an attack
classifier network, in order to determine a specific attack type.

III. OUR APPROACH

In this section, we first discuss the motivation behind our
pruning algorithm in Section III-A. In order to make an
effective decision on neuron pruning, We derive a formal rela-
tionship of the importance score of neurons with the input
features x and the weight matrices W. Then, we introduce our
proposed pruning algorithm based on an AE network, which
is inspired by the formulation of the importance score of neu-
rons in Section III-B. Finally, we exploit the pretrained pruned
encoder network to construct an attack classifier for detecting
the abnormality and the attack type from the network traffic
traces.

A. Motivation

For the sake of simplification, we first take into account
an AE model with one hidden layer. Fig. 2 shows an AE
model consisting of three layers: 1) input; 2) one hidden; and
3) output layers. The equation of rectified linear unit (ReL.U)
activation function is presented as follows:

z, 2>0
0, otherwise.

ReLU(z) — { (1)

Since the computation of the derivative of ReLU is quite
fast compared to other activation functions, and there is no
saturation for the range of non-negative input values, ReLU
is selected as the activation function. The input and output
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n_input units n_output units

Fig. 2. Architecture of a fully connected AE model with one hidden layer.

layers have n, features, while the hidden layer contains nj,
ReLU activation units (where n, < ny, in general). Let wy
denote the connection weight between input feature x; and
feature Ay in the hidden layer. Similarly, W;Cj is the weight
value that represents the strength of connection between fea-
ture h; and the reconstructed feature X;. Specifically, i, =
> ReLU(wix + by) and X = Y ", ReLU(hkw;{j + b))
where by and b; are bias values of hidden unit / and output
unit &}, respectively.

Assume that there are m samples in the training set. The
objective function is to minimize the mean-squared reconstruc-
tion error

I« 0\?
_ 0 _ =
C= 5 E (x x ) ()

=1

where x”) the Ith sample in the training set. Using the chain
rule, the importance of each input feature (which is pro-
portional to the change in the loss function with respect to
a specific input feature |(dC)/(dx;)|) is derived for a given
training sample

ac| Z aC %
0x; o c 3)?/' 0x;
J=1
3 Z aC % 3% hy
o N D e i
Ny np
S ICEND SRR
j=1 k=1,%>0,ly>0

According to the above equation that the importance of
feature x; depends on the sum of the product of weight val-
ues, w;g.wik. In case of the fully connected AE, x; propagates
through all hidden units 7 on the link wy, (1 < k < ny,), before
reaching the output unit X; on the link w;_. In other words, the
importance score of x; is highly related to the propagation
paths from x; to xj. Accordingly, the product of connection
weights (w;{jw[k) on the propagation path between x; and X;
can be used as a physically meaningful metric for pruning a
neuron in the AE model. However, it takes a long time for the
training procedure to find the optimal weight values, and some
specific learning cases with a large number of training samples
or a complex AE architecture often make it even worse.
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We aim to design a pruning algorithm that can sparsify
a given network without a pretraining process. Inspired by
the fact that the importance score of an input feature highly
depends on the propagation path between the input feature
and output units, we propose a probabilistic pruning method
in which the importance score of an input unit is first deter-
mined based on a correlation coefficient between the input unit
and the reconstructed input. Then, the probability for a neuron
to be pruned is computed based on its importance score. In
case of the important input features, we want them to keep
remained by acquiring as many propagation paths as possible,
with a relatively low pruning probability; the unimportant fea-
tures would rather be skipped for the architectural efficiency by
likely pruning the existing propagation paths with a relatively
high pruning probability.

Most of the existing pruning algorithms are deterministic,
i.e., the edge weights with the lowest importance score are
completely removed from the network. An inherent problem
of these deterministic pruning methods is that they often
delete some boundary yet still important neurons located right
below a threshold. Although both the pruned and the remain-
ing neurons may have the similar contributions to the fully
connected network, the deterministic algorithms discard any
further opportunity. In order to address this issue, we propose
a probabilistic pruning method that attempts to prune a neuron
with a certain pruning probability, which is determined by the
importance score and the rank of the neuron.

Fig. 3 shows an example of removing a connection path
from x; to Xj. In Fig. 3(a), x; is fully connected with %; via all
4 hidden units in the fully connected AE model. In case that
one hidden unit is pruned, the number of propagation paths
from x; is reduced to 3, based on the contribution of x; to the
output layer.

B. Algorithm

We present a pruning algorithm called Spearman
correlation-based probabilistic pruning (SCPP) for a general
AE model with an arbitrary number of hidden layers. Note
that there are are some advanced AE models [26] with more
complex architectures. However, since our work aims to
design a lightweight intrusion detection method for edge
devices, a fundamental architecture of AE is used to learn the
representative features of data traffic. SCPP consists of three
steps: 1) computing the importance score of input features;
2) computing the pruning probability for each input feature;
and 3) constructing a pruned AE model.

1) Computation of the Input Feature’s Importance Score:
In the proposed SCPP algorithm, the importance score of the
ith input feature x; is computed by measuring a correlation
between x; and other input features. Since the representative
features extracted from the AE network are then used to build
a classification model, the SCPP algorithm also considers the
correlation between x; and the output labels of the classifier.
Note that in general, the input features are either discrete
or continuous variables. We select the Spearman correlation
method [27] to compute the correlation coefficient between
two features since it can be applied for both discrete and
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(b)

Fig. 3. Demonstration of the propagation paths between x; and X; in an
AE network. (a) Original neural network before pruning. (b) Pruned neural
network after pruning.

continuous variables. Let o (x;, x;) denote the correlation coef-
ficient between two input features x; and x; while o(x;, yk)
indicates the correlation score between x; and the kth label
Yk- Assume that there are ny, output units in the classification
model. We define s(x;) as the importance score of x;, which is
equal to the mean of Spearman correlation values between x;
and all of the reconstructed features at the output layer of the
AE network as well as the label of the classification model.
Note that in the ideal case the AE model is trained such that the
reconstructed feature equals the corresponding input feature,
ie., X; = x; with i = 1,2, ..., n,. Therefore, the importance
score s(x;) can be derived as follows:

1 nx ny
S(xl')=m ;}P(xi,xj)|+~;|,0(xi:)’k)| NG

Since the correlation coefficient can get a negative value, the
absolute values |p(x;, x;)| and |p(x;, yx)| are considered.

The Spearman correlation between two variables is equiv-
alent to the Pearson correlation between the rank values of
them. Let R, and Ry denote the rank of two variables x; and
x;j, respectively. Then, if there are n samples for each variable,
p(x;, xj) is derived as

2 k=1 (Rfff - MRX,-> (R)(cf) = MRXJ-)
o (Ry)o (Ry)

where KR, and IR, are the mean of rank R,, and Ry,
respectively, while o (Ry,) and o (ij) denote the standard devi-
ations of rank Ry; and R,;, respectively. The input features are
arranged in the descending order of the importance score’s

)

p(xi, x;) =
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TABLE I
EXAMPLE OF THE PRUNING PROBABILITY OF FIVE INPUT FEATURES

Rank of Feature scores [ Pruning Probability
0

0.2

B EN[SIN
9999
oo N R

rank value, i.e., the feature with the largest importance score
has a rank value of 1, while the feature with the smallest
importance score has a rank value of n,, which is defined as
the number of input features.

2) Computing Pruning Probability for Input Feature: In
the second step, we find and assign a pruning probability
for each input feature. A linear method is used such that the
pruning probabilities are determined to be linearly increased
with the ascending order of the rank values of input features’
importance scores. More specifically, a feature with the rank
mean of the importance score value, Ry, = [(n + 1)/2],
is pruned according to a target pruning rate pprune. In addi-
tion, the pruning probability for input feature x;, p(x;) is
linearly proportional to the rank value with the step size
A = ([2 x min(pprune, 1 — pprune)]/[nx — 11). Mathematically,
the pruning probability of feature x; is calculated as follows:

P(Xi) = Pprune + A(RS(Xz - RS(Xi))
ny+1
= Pprune + A(Rg(x’ - = 2 ) (6)

Table I demonstrates an example of the pruning probability
for ny = 5 input features, where pprune = 0.4 is given. The step
size that indicates the pruning probability difference between
two features with the consecutive rank values is given by A =
[(2 x min(0.4, 0.6))/(5 — 1)] =0.2.

3) Construction of Pruned AE Network: After obtaining the
pruning probability of each input feature, the pruned network
is constructed by first computing the mask matrices, and then
determining the pruned propagation paths using the mask
matrices. For example, in case of the AE model with a hidden
layer, a binary mask matrix My € B> is used to indicate
the mask connection between the input layer and the first hid-
den layer. The connection mask of the ith input feature x; is
represented by nj, elements in the ith row of My. Specifically,
these n; elements are samples of a random variable that fol-
lows the Bernoulli distribution with the mean of 1 — p(x;),
where p(x;) is the pruning probability of input feature x;.

Let M; € B">" denote the connection mask between the
hidden layer and the output layer. Since the AE model usually
has a symmetric architecture, the propagation paths are also
symmetric in terms of layer structure (i.e., M| = Mg ).

Similarly, we take into account the general AE with an arbi-
trary number of hidden layers. First, the connection masks of
the encoder part are determined, and then that of the decoder
side can be inferred because of the symmetric AE architec-
ture. Mask matrix My for weights between the input and the
first hidden layers is derived in the same way as in the case of
one hidden layer. For the connection mask M that represents
the remaining propagation paths between the first and the sec-
ond hidden layers, the pruning probability of each hidden unit
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Fig. 4. Our proposed lightweight NIDS architecture based on a pruned AE.

in the first hidden layer should be estimated. We define h}k)

as the jth unit at hidden layer k. Let My and n;lk) denote the
connection mask and the number of hidden units in layer k,
respectively. If there are n; hidden layers, 1 < k < n;. Since
hidden units h}l) transmit information of all of the input fea-

tures to the next layer, the pruning probability of p(h;l)) is
calculated as the average ratio of the remaining connections

from the input layer through the hidden unit h;l)

o) -

where My[i,j] is the element of Mo at the ith row and jth
column. In general, based on the connection mask of the
preceding layer, the pruning probability of the units in the
current layer in the encoder side is calculated in a recursive
manner. Suppose that there are nﬁlk) units at hidden layer k.
The pruning probability for the jth unit at the kth hidden layer
h}k) is calculated as follows:

r(n") =

where j = 1,2,...,n, ). Finally, after obtaining the connec-
tion mask matrices for the encoder side, the mask matrices
for the decoder part are inferred with the assumption of a
symmetric AE architecture. In other words, My = M,,—; with
k= [(m+1)/2], [(n; +3)/2], ..., n;. The procedures of the
SCPP method can be summarized in Algorithm 1. The SCPP
algorithm consists of three consecutive steps and the com-
plexity of each step is O(n)% + nyny), O(ny) and O(nzl)m),
respectively. Note that due to ngzl) < ny, the time complexity
of SCPP is as high as O(n,% + nyny).

Moli. ] @)
Z

(ls D

Z My i, j] ®)

i=1

(k D

C. Lightweight Intrusion Detection Architecture

Making use of the prior pruned AE model, we construct and
train a neural network-based classifier by connecting a fully
connected softmax layer after the AE’s encoder network, as
shown in Fig. 4. For the binary intrusion detection problem, a
single output unit is sufficient to represent the network behav-
ior with normal and abnormal (0: normal and 1: abnormal). For
the multiattack classification problem, the number of output

Authorized licensed use limited to: Ewha Womans Univ. Downloaded on January 16,2023 at 11:35:10 UTC from IEEE Xplore. Restrictions apply.



DAO AND LEE: STACKED AUTOENCODER-BASED PROBABILISTIC FEATURE EXTRACTION

Algorithm 1 SCPP Algorithm

Input: Pruning rate pprune
Number of input features ny
Number of attack labels ny
Number of hidden layers of autoencoder model n;

First step: Compute input feature’s score
1: Rank input feature Ry, using the training dataset

2: fori=1— ny do
3: for j =i — ny do

U RY — ur )RE — g, )
4 o (xi, Xj) = -

o (Rx)o (Ry)
5: end for
6: for k=1— ny do
7: Compute p(x;, y)
8: end for
9: end for
10: for i =1 — ny do
I‘ly

11: s(x;) =

1 U

> Input features’ score
12: end for

+ Dp(x,-,ym)
k=1

Second step: Compute pruning probability for input features
2 x mln(Pprune’ — Pprune
13: A = I
Ny —
14: fori:1—>nx(ﬁ)

15: p(x;) = Pprune + A(Rs(xi) -
16: end for

nx;—1>

Third step: Construct the pruned AE model

17: Prune connections from feature x; with probability p(x;)

18: Construct mask matrix M between input to first hidden layer
Derive connection mask for encoder

19: for k=1— % do

20: forj=1— n;lk) do

(k=1)
I
. (N ;o
21: P = 7, 2; M1 ]
h 1=
22: Prune connections from neuron j in layer & to layer k+ 1

with probability p(h{"))
23: end for ’
24: Derive My,

25: end for

Derive connecition mask for decoder
n;+
26: for k = IT — n; do
27: My =My,
28: end for
return The pruned autoencoder model

> symmetric pruning

units is equal to the number of attack types where each output
unit implies the probability for a specific attack to appear. The
parameter training in the classifier consists of three following
steps.
1) Step I: Initialize the weights across hidden layers by
using the pretrained weights of the encoder network.
2) Step 2: Freeze the weights in hidden layers of the
classifier and train only the softmax layer.
3) Step 3: Fine-tune the weights of the whole deep neural
network.
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Fig. 5. Visualization of images in the MNIST data set [30].

IV. EXPERIMENTS

We evaluate the feasibility of our network intrusion detec-
tion algorithm on two real-world network traffic data sets:
1) UNSW-NBI15 [28] and 2) CICIDS [29]. We first validate
the effectiveness of the encoder network of our pruned AE
architecture by quantifying the reconstruction error. We select
three state-of-the-art pruning algorithms based on their nov-
elty and popularity: 1) Molchanov’s algorithm [23]; 2) Han’s
algorithm [24]; and 3) NISP algorithm [25]. It should be noted
that the proposed pruning algorithm is designed for resource-
limited edge devices (e.g., FPGA-based routers or gateways,
or IoT devices), which cannot support computationally inten-
sive operations. To stress out this aspect, we validate NIDS
models in terms of the number of parameters and computation
operations.

We apply our pruning algorithm and the counterpart algo-
rithms to an original fully connected AE model, in which the
former encoder network consists of 100, 50, 20 neurons across
three hidden layers for UNSW-NB15, and 60, 30 neurons
across two hidden layers for CICIDS, in order to evaluate the
resulting pruning quality. The above-mentioned architecture,
with the highest result on the validation set among different
network architectures of the AE model, is selected.

We first show how the SCPP pruning algorithm can keep
the inherent patterns of images on the handwritten digit
recognition task using the MNIST data set. Then, once the
unsupervised feature of our pruning technique is validated, we
investigate the prediction accuracy of network intrusion clas-
sification. We show the accuracy of predicting the abnormality
of network traffic with two classes, i.e., whether a network traf-
fic trace turns out to be normal or not. Our NIDS algorithm that
has been trained with two labels is compared against a state-of-
the-art two-label NIDS classifier [8] based on multidistributed
variational AE (MVAE).

Beyond the binary anomaly detection, we validate more
detailed classification performance of inferring the correct
anomaly type with a multiclass NIDS classifier. Our classifier
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(a)

Fig. 6. Visualization of the importance scores for images with a specific label based on a derivation method (a) and our SCPP algorithm (b), respectively.

is compared against a fully connected neural network-based
classifier as an upper bound performance baseline and a two-
stage deep learning model (TSDL) [26] with an advanced AE
network in NIDS.

A. Experimental Setting

We used two representative network traffic traces of UNSW-
NB15 and CICIDS data sets. The UNSW-NB15 data set
includes real normal and synthetic abnormal network traffic
traces during a 16-h experimental period, consisting of nine
attack classes. For our evaluation, the full data set was divided
into a training data set of 175341 samples and a test data set
of 82332 samples, and one third of the training data set is
used as the validation data set.

The CICIDS data set covers normal network activities and
common network attacks with 14 different types, which were
collected during five days in 2017. The entire data set contains
more than 3 million samples and 78 recorded features, and is
divided into the training, validation, and test data sets with
the ratio of 6:2:2. According to [30] and [31], in which 20%
samples are recommended to be used as the test set, we have
randomly selected 20% instances as the validation set for the
selection of the good hyper-parameters, while the remaining
60% data are used to train network parameters.

To preprocess the traffic features, the nominal features are
first converted to binary values using the one-hot encoding
technique. Then, the min-max normalization is applied to
bound the absolute input values to be less than or equal
to 1. The autoencoder model consists of a certain number of
hidden layers where the middle hidden layer contains the rep-
resentative traffic features. After training the AE model, the
representative features are extracted and fed into the softmax
output layer in the classification model. The number of units
in the encoder of the AE model is fixed to [100, 50, 20] and
[60, 30] for UNSW-NB15 and CICIDS data sets, respectively,
while the number of softmax units is equal to the number
of traffic classes. We implemented our NIDS algorithm and
other counterpart algorithms in a desktop PC with Intel Core
i7-9700 3GHz CPU (with no GPU support) and 16 GB RAM,
which are comparable to a normal edge device specifica-
tion, with TensorFlow 1.15.0 on 64-bit Windows 10 OS to
evaluate the detection and classification performance of the
pruning methods. There are some commercial devices at the
edge with the similar hardware configuration: NVIDIA Jetson
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Fig. 7. Effect of the pruning methods on MNIST classification performance.

AGX Xavier, Jetson Xavier NX, Jetson Nano, Cisco IC3000
Industrial Compute Gateway, Dell Edge Gateway Model 5100
(industrial version), and Industrial Smart IoT Edge Computing
Gateway.

B. Pruning Effect on Feature Extraction

To get a glimpse of the effectiveness of our proposed SCPP
pruning algorithm in a visual way, we illustrate the impor-
tance scores of features for images in the MNIST data set, as
shown in Fig. 5. Since the images with different labels retain
unique features, we validate how well a pruning algorithm
avoids losing the innate characteristics within a feature.

We calculate the important scores of the input features
with the same size of 28 x 28 with the MNIST images
and visualize them for each label from the left to right side
of Fig. 6. As can be compared in Fig. 6(a) and (b), the
SCPP algorithm extracts and highlights the key patterns in
a more clear contrasting manner, in particular for the cases
of labels 6, 8, and 9. This result implies that our SCPP
algorithm is good at keeping the core features after pruning
some unimportant features, without requiring a pretraining AE
model.

We validate how choosing a different pruning rate affects
classification performance over different pruning methods on
the MNIST data set. We construct an AE model with a hid-
den layer of 300 neurons to learn the latent vectors from the
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Fig. 8. Effectiveness of pruning algorithms in terms of reconstruction error
on the training set by varying the pruning rate. (a) UNSW-NB15 training set.
(b) CICIDS training set.

MNIST images. Then, the extracted vector is used to classify
the images into 10 different classes. As shown in Fig. 7, our
pruning algorithm achieves similar performance to the others
with the low pruning rates (e.g., 0.5) and higher performance
for higher pruning rates beyond 0.5. In particular, in case of
the pruning rates of 0.98, our SCPP algorithm further improves
the classification accuracy by 1 to 3.5% compared to others.
The SCPP results on the handwritten digit classification task
implicitly implies that the proposed SCPP pruning scheme can
work well for a general machine learning problem. The rest of
this section is devoted for analyzing experimental performance
of SCPP and other pruning methods on the intrusion detection

task.

C. Feature Extraction Performance

We measure the reconstruction error that calculates the mean
squared error between the input samples and their recon-
structed output samples after pruning, on both UNSW-NB15
and CICIDS data sets, as shown in Figs. 8 (for training sets)
and 9 (for test sets). We vary the pruning rate pprune in the
range of [0, 1], and report the average performance over 5
experiment runs. We compare our SCPP pruning algorithm to
other pruning counterpart algorithms of Molchanov’s, Han’s,
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Fig. 9. Effectiveness of pruning algorithms in terms of reconstruction error on
the test set by varying the pruning rate. (a) UNSW-NB1S5 test set. (b) CICIDS

test set.

and NISP algorithms together with a naive random pruning
approach that randomly prunes a neuron with a probability of
Pprune-

As indicated in Fig. 8(a) and (b) on both data sets, as the
pruning rate pprune increases from 0 to 0.95, our SCPP algo-
rithm increases very slowly from 2.14 x 107 to 5.18 x 10~
with a factor of 2.42 on the UNSW-NBI5 data set. On
the other hand, the reconstruction error of the other pruning
algorithms: random pruning, Molchanov’s, Han’s, and NISP
increases steeply with a factor of 4.47, 8.03, 16,65, and 14.69,
respectively, as in Fig. 8(a). We verify the similar result on the
CICIDS training set, as shown in Fig. 8(b) and the test sets
of both data sets in Fig. 9.

This result demonstrates that our probabilistic feature
extraction provides an effective way of dropping some unim-
portant connections in the fully connected neural network
even at a very high pruning rate of 0.95, for example. An
AE network pruned by our approach reconstructs the input
with a relatively smaller error. This implies that using only
a small portion of neurons via our approach still provides
a stable unsupervised learning performance with the smaller
computation and memory usage.

In that Molchanov’s, Han’s and NISP algorithms perform
pruning in such a deterministic way that the connections with
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Fig. 10. Loss and prediction accuracy of our SCPP-based two-label classifier
over epoch on the UNSW-NBI15 data set.

the lower importance scores are completely removed from the
network even though they may have interconnected with their
prior or subsequent connections with the higher importance
scores. It is interesting to see that our approach and the random
pruning that both prunes neurons in a probabilistic manner are
more effective in feature extraction than the other determinis-
tic pruning techniques. This implies that a pruning algorithm
with reliable feature extraction can be applied to an even more
deep and wide neural network under the same learning and
inference time constraint.

D. Network Intrusion Detection Performance

We evaluate the network intrusion detection performance for
two classification problems: 1) two-label classification with
normal and abnormal and 2) multilabel classification with
attack types.

1) Two-Label Classification: We first show the learning
curves of our SCPP algorithm in the accuracy and loss
dynamics for two-label classification on the UNSW-NBI15
data set, as shown in Fig. 10. From the beginning to epoch
40 or around, the SCPP-based two-label classifier network
gets trained quickly and efficiently. When there is no fur-
ther improvement in accuracy of the validation set for the
last 20 epochs, we stop the parameter training process. We
fine-tune training parameters with various pruning rate and
learning rate, as shown in Fig. 11. The detection accuracy
highly depends on both the learning rate and the pruning rate.
Specifically, the learning rate higher than 0.01 results in unsta-
ble and low detection performance, especially with the pruning
rate lower than 0.8. Moreover, the accuracy performance gen-
erally decreases in case that the pruning rate higher than 0.8
due to the lack of network parameters. Since the learning rate
of 0.01 produces the highest results among possible values, we
have selected 0.01 as the default value for the learning rate of
the classification model.

Then, in order to compare our algorithm with a state-
of-the-art two-label classifier, MVAE with feature extraction
in NIDS [8], we collect the area-under-curve (AUC) score
which considers both true-positive and false-positive. This is
due to the fact that the score measure considers both detec-
tion quality and specificity at various threshold settings. As
shown in Table II, our SCPP-based algorithm outperforms
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Fig. 11. Effect of the learning rate on two-label prediction accuracy in our
SCPP algorithm with respect to pruning rate on the UNSW-NBI15 test set.

TABLE 11
PERFORMANCE COMPARISON AMONG TwWO-CLASS
CLASSIFIERS ON THE UNSW-NB15 DATA SET

Models AUC | #Param | Memory | #FLOPs
Score (KB)
MVAE w/ Naive Bayes 0.928 | 25,812 100.83 25,640
MVAE w/ SVM 0.945 [ 25,791 100.75 25,620
MVAE w/ Decision Tree 0.954 25,790 100.74 25,600
andom Forest } s . s
AE w/ Random Forest 0.900 25,870 101.05 25,600
SCPP W/ pprune =0 0.963 [ 25,791 100.75 25,620
SCPP W/ pprune = 0.5 0.9635 12,991 50.74 12,820
SCPP W/ pprune = 0.8 0.962 5,311 20.74 5,140
SCPP W/ pprune = 0.95 0.935 1471 5.75 1,300

all of other counterpart algorithms, which combines various
machine learning techniques with the MVAE-based underly-
ing feature extraction. Observing the performance of our SCPP
algorithm with different pruning rates, we demonstrate that
the SCPP-based two-label classifier can substantially reduce a
large portion of parameters from 80% up to 95%, without a
significant sacrifice of the classification performance.

We also compare the SCPP-based classification models with
the existing methods in terms of computation and memory
overhead. Specifically, the memory usage to store network
parameters and the number of FLOPs are used as compari-
son metrics. It is assumed that four bytes are used to store
each parameter. It should be noted that, without neuron prun-
ing, the fully connected classifier with MVAE has the model
complexity similar to the proposed SCPP method with the
pruning rate of 0. Even though MVAE and AE use differ-
ent cost functions, they have the same architecture. When the
pruning rate increases, our SCPP scheme can yield even lower
model complexity than MVAE to learn the latent represen-
tation of data traffic. For example, when the pruning rate is
0.8, both memory and complexity overhead of the SCPP-based
classification model are reduced by almost 80%.

2) Multilabel Classification: In order to show the
lightweight benefits of SCPP over other pruning methods,
we first conduct performance comparison between pruning
algorithms in terms of training time, inference time, and mul-
ticlass classification accuracy. Then, we measure and compare
architecture complexity and accuracy among the SCPP algo-
rithm, the fully connected neural network, and TSDL model.
Finally, research discussion is made on the possible improve-
ment of the classification performance of the proposed method
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Fig. 12. Training time and classification accuracy depending on the pruning
algorithm on the UNSW-NBI15 data set. (a) Training time. (b) Classification
accuracy.

TABLE III
AVERAGE PERFORMANCE OF PRUNING ALGORITHMS ON UNSW-NB15

Accuracy (%) | Training | Inference

time (s) time (s)
Han 69.32 293.70 0.068
NISP 71.40 312.39 0.069
Molchanov 73.99 281.1 0.070
Random 72.95 239.08 0.075
SCPP 74.17 254.88 0.073

TABLE IV

AVERAGE PERFORMANCE OF PRUNING ALGORITHMS ON CICIDS

Accuracy (%) | Training | Inference

time (s) time (s)
Han 95.70 1786.93 043
NISP 96.66 1936.13 042
Molchanov 96.35 1882.64 0.47
Random 96.11 1285.46 043
SCPP 96.58 1851.02 043

by analyzing the data distribution and accuracy on each attack
label.

First, Figs. 12 and 13 show the comparisons of the average
training time and classification accuracy with different prun-
ing algorithms by varying the pruning rate from O to 0.98 on
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TABLE V
PERFORMANCE COMPARISON FOR MULTIATTACK CLASSIFICATION WITH
FuLLY CONNECTED NN, TSDL oN UNSW-NB15

No. of No. of | Accuracy
parameters | FLOPs (%)
TSDL [27] 31,031 61,710 76.48
Fully-Connected NN 25,980 51,600 73.37
SCPP (pprune = 0.5) 13,080 25,890 74.63
SCPP (Pprunc = 0.9) 2,760 5,322 74.65
SCPP (pprune = 0.95) 1,470 2,751 73.09

TABLE VI

PERFORMANCE COMPARISON FOR MULTIATTACK CLASSIFICATION
WITH FULLY CONNECTED NN, TSDL oN CICIDS

No. of No. of | Accuracy
parameters | FLOPs (%)
TSDL [27] , 16,970 98.92
Fully-Connected NN 7,035 13,360 98.63
SCPP (pprune = 0.5) 3,570 6,983 98.02
SCPP (pprune = 0.9) 798 1,481 9731
SCPP (pprune = 0.95) 452 793 97.08

the UNSW-NB15 and CICIDS data sets, respectively. Since
network parameters are randomly initialized, to make fair com-
parison between the pruning algorithms, we collect and present
the average training time and classification accuracy over 10
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TABLE VII
DISTRIBUTION OF ATTACK TYPES IN THE TRAINING AND TEST SETS OF UNSW-NB15
Class name Training size | Training distribution (%) [ Test size | Test distribution (%)

Analysis , 1.14 677 0.82

Backdoor 1,746 1 583 0.71

DoS 12,264 6.99 4,089 497

Exploit 33,393 19.04 11,132 13.52

Fuzzers 18,184 10.37 6,062 7.36

Generic 40,000 22.81 18,871 22.92

Normal 56,000 31.94 37,000 44.94

Reconnaissance 10,491 5.98 3,496 4.25

Shellcode 1,133 0.65 378 0.46

‘Worms 130 0.07 44 0.05

Total 173,341 100 82,332 100

TABLE VIII
CONFUSION MATRIX ON THE TEST SET OF UNSW-NB15
Anal. | Back. | DoS | Expl. Fuzz. Gene. | Norm. [ Reco. | Shell. | Worm. [ Total Accuracy (%)
Anal. 1 0 23 638 11 0 4 0 0 0 677 0.15
Back. 0 26 23 507 15 0 2 2 8 0 583 4.46
DoS 0 39 174 3,642 132 8 19 29 46 0 4,089 4.26
Expl. 16 48 120 | 10,146 445 2 80 111 162 2 11,132 91.14
Fuzz. 0 25 48 1,444 3,126 0 965 156 208 0 6,062 51.57
Gene. 0 I1 57 460 141 18,142 34 5 18 3 18,871 96.14
Norm. 306 63 24 1,161 7,426 I 27,507 391 120 1 37,000 7434
Reco. 0 8 14 645 44 ! 58 2,652 71 0 3,496 75.86
Shell. 0 15 0 34 41 0 7 68 213 0 378 56.35
Worm. 0 1 0 30 5 0 0 0 1 7 44 15.9
Total 323 236 483 | 18,707 | 11,386 | 18,157 | 28,676 | 3,414 937 13 82,332 | Average: 75.29%

running times for each pruning rate. Generally, the classifi-
cation accuracy clearly decreases when the pruning rate is
greater than 0.8. This observation is attributed by the fact that
the large pruning rate causes the lack of network parameters,
and thus, the classification model becomes underfit to the data
samples.

In order to indicate the overall performance of pruning
algorithm over different pprune values, we take an average of
classification accuracy, training time, and inference time over
pruning rate values as shown in Tables III and IV. In prac-
tice, a specific pruning rate should be used; however, for the
purpose of conducting extensive and quantitative experiments,
we measure how well each pruning algorithm shows dynamic
performance over a variety of pruning rates, requiring different
computation and memory overhead. With the UNSW-NB15
data set, our SCPP achieves the highest average classification
accuracy (i.e., 74.17%), while requiring relatively lower train-
ing time, thus becoming more feasible to edge devices than
the other methods. On the CICIDS data set, the highest clas-
sification accuracy (96.66% on average) belongs to the NISP
method. Meanwhile, our SCPP algorithm produces the second-
highest accuracy with the 85-s reduction of training time
(i.e., 4.4%) compared to the NISP method. The random prun-
ing method consumes the lowest training time on both data sets
for parameters learning, but the classification performance is
less than SCPP and Molchanov’s algorithms. With regard to
the inference time for all test samples, the pruning algorithms
consume similar amount of time to recognize an attack type
of incoming traffic on both data sets.

In summary, beside the lower reconstruction error than the
other pruning methods, our SCPP algorithm yields relatively
higher classification accuracy with the lower training time
than the deterministic pruning schemes. Since edge devices
are equipped with some more limited computing and memory

resource, it is more beneficial to use the proposed SCPP
scheme when deploying a network defense system on the edge.

Second, we validate the multiattack classification
performance by comparing our algorithm against a fully
connected neural network and TSDL [26] on both data sets as
shown in Tables V and VI. TSDL consists of two consecutive
submodels. The first submodel trains an AE network from
traffic features and then the condensed features are fed into a
sigmoid output layer to learn the intrusion probability value.
This probability value and traffic features provided by the
data set are later used to construct another AE network. In
the second submodel, the abstract encoded features extracted
from the second AE are connected to an softmax output layer
to classify attack types of data traffic.

As can be seen in Tables V and VI, with some small
sacrifice in classification accuracy of 1.9%-3.4%, the SCPP
algorithm is much more lightweight than TSDL. For exam-
ple, in UNSW-NB15, when the pruning rate is set to 0.9, our
SCPP method can reduce parameters and FLOPs by a fac-
tor of 11.2 and 11.6, respectively, with less than 2% accuracy
reduction. The reason that TSDL offers a slightly higher accu-
racy is that TSDL is based on a relatively more complex two
serial submodels where the second submodel leverages the
intrusion probability learnt from the first submodel. Our SCPP
algorithm, on the other hand, only considers one AE network
together with neuron pruning, resulting in considerably fewer
parameters and FLOPs than TSDL. Therefore, a symmetric
AE network consisting of an encoder and a decoder turns
out to be an effective architecture for extracting the feature
representation.

The results indicate that our SCPP-based NIDS algorithm
produces a similar predictive performance, while using con-
siderably fewer parameters. For example, with ppune =
0.95 where 95% of the weight connections are pruned, our
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TABLE IX
DISTRIBUTION OF ATTACK TYPES IN THE TRAINING AND TEST SETS OF CICIDS 2017

Class name Training size [ Training distribution (%) [ Test size | Test distribution (%)
Normal 1,134,810 80.31 567,415 80.31
Botnet 978 0.069 489 0.069
DDoS 64,012 4.53 32,007 4.53
DoS GoldenEye 5,146 0.36 2,574 0.36
DoS Hulk 115,062 8.14 57,531 8.14
DoS Slow HTTP 2,748 0.19 1,377 0.19
DoS Slow Loris 2,898 0.21 1,449 0.21
FTP 3,966 0.28 1,986 0.28
Heart bleed 4 0.00028 5 0.00071
Infilt 18 0.0013 9 0.0013
PortScan 79,398 5.62 39,701 5.62
SSH 2,948 0.21 1,475 0.21
Web Attack Brute Force 752 0.053 379 0.054
Web Attack Sql Inject 10 0.00071 6 0.00085
Web Attack XSS 326 0.023 163 0.023
Total 1,413,076 100 706,566 100
TABLE X
CONFUSION MATRIX ON THE TEST SET OF CICIDS
Norm. Botn. DDoS DoSG. DoSH. DSH. DSL. FTP Hear. Tnfi Port. SSH. WABE WAST. WAX: Total Accuracy(%)
Norm. 563.423 7 30 13 1,890 329 26 20 0 T 1.675 T 0 0 0 567,415 99.3
Botn. 489 0 0 0 0 0 0 0 0 0 0 0 0 0 0 489 0
DDoS 1,047 0 29,510 0 1,450 0 0 0 0 0 T 0 0 0 0 32,007 92.2
oSG 357 0 0 7769 3 3 7 0 0 0 0 0 0 0 0 257 TE.15
ToSH. 15367 0 0 0 EPAL) 0 0 0 0 0 0 0 0 0 0 37531 7325
[ DSH. 310 0 0 T 0 062 7 0 0 0 0 0 0 0 0 T3 WAV
[ DSL. 0 0 0 T 0 i75 336 5 0 0 0 0 0 0 0 1,349 57.60
FIP. 127 0 0 0 0 0 0 1859 0 0 0 0 0 0 0 1.086 0361
Hear. T 0 0 0 0 0 0 0 T 0 0 0 0 0 0 5 20
[_Tnfi. 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0
Port. 240 0 0 0 9 0 0 0 0 0 39,452 0 0 0 0 39.701 99.37
SSH. 728 0 0 0 2 0 0 6 0 0 0 745 0 0 0 1,475 50.51
WABF o1 0 0 0 0 0 0 0 0 0 0 7 18 0 0 375 775
WAST 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0
WAX. T67 0 0 T 0 0 0 0 0 0 0 0 0 0 0 163 0
Total 582,99 7 20580 | 2285 | 45495 | 13569 | 868 1357 T T I35 [ 746 T8 0 0 06,566 | Average: 96.43%
TABLE XI TABLE XII

PRECISION, RECALL, AND F1 PERFORMANCE ON
THE TEST SET OF UNSW-NB 15

Precision | Recall FI
Anal. 0.0031 0.0015 | 0.002
Back. 0.1102 0.0446 | 0.0635
DoS 0.3602 0.0426 | 0.0762
Expl. 0.5424 09114 | 0.6801
Fuzz. 0.2745 0.5157 | 0.3583
Gene. 0.9992 0.9614 | 0.9799
Norm. 0.9592 0.7434 | 0.8376
Reco. 0.7768 0.7586 | 0.7676
Shell. 0.2273 0.5635 | 0.3239
Worm. 0.5385 0.159 | 0.2455

algorithm reduces the number of parameters, and the num-
ber of FLOPs by a factor of 25980/1470 =~ 17.67 and
51600/2751 ~ 18.76, respectively, on the UNSW-NB15 data
set, and by a factor of 7035/452 ~ 15.56 and 13 860/793 ~
17.48, respectively, on the CICIDS data set, while achieving
almost similar prediction quality, compared to the fully con-
nected neural network. Meanwhile, the number of parameters
and FLOPs in our SCPP algorithm is equal to 1/21.11 and
1/22.43 that of TSDL with ppryne = 0.95 in UNSW-NB15. In
cases of CICIDS, these numbers are 1/19.06 and 1/21.40 for
parameters and FLOPs, respectively.

Reducing the number of FLOPs by a factor of roughly 19
technically means that the edge devices with SCPP can inspect
data packets 19 times higher than the fully connected classifi-
cation model. For example, assume that an edge device (e.g.,
industrial smart IoT edge computing gateway by EtherWan
systems company) has a speed of 1.35 GHz and spends 20
clock cycles on average for each FLOP. In SCPP, the maxi-
mum number of packets to be inspected by this edge device
is (1.35 x 10%)/(2,751 x 20) = 24736. If there are 1000

PRECISION, RECALL, AND F-1 PERFORMANCE ON
THE TEST SET OF CICIDS

Precision | Recall F-1
Norm. 0.9664 0.993 0.9795
Botn. 0 0 N/A
DDoS 0.999 0.922 0.959
DoSG. 0.993 0.8815 0.934
DoSH. 0.9262 0.7325 | 0.8180
DSH. 0.6769 0.7712 0.721
DSL. 0.9631 0.5769 | 0.7216
FTP. 0.987 0.9361 | 0.9609
Hear. I 0.20 0.3333
Infi. 0 0 N/A
Port. 0.9586 0.9937 [ 0.9758
SSH. 0.9987 0.5051 0.671
WABF. 1 0.0475 0.091
WASI. 0 0 N/A
WAX. 0 0 N/A

bytes per packet on average, the maximum data rate can be
inspected is 24736 x 1000 x 8 = 187.2 Mb/s. Meanwhile, if
using the fully connected classification model, the mentioned
edge device can only process maximum 187.2/18.75 = 9.98
Mb/s. Therefore, the proposed SCPP algorithm allows NIDS
to be implemented on the edge device in networks with a
relatively larger volume of traffic.

Finally, in order to give insights into multiclass
performance, we present label distribution, confusion
matrices on the test set of both data sets as shown in
Tables VII, VIII, IX, and X. Please note that both data
sets are highly biased in terms of the number of samples
in each different group as can be seen in Tables VII
and IX. As a result, performance in some certain classes
with majority samples is expected to be much higher than
others. Tables VIII and X show the confusion matrix of the
classification model with SCPP (pprune = 0.5) on the test sets
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TABLE XIII
CONFUSION MATRIX ON THE TEST SET OF UNSW-NB15 AFTER UPSAMPLING MINORITY CLASSES

Anal. [ Back. | DoS T Expl. [ Fuzz. | Gene. [ Norm. [ Reco. | Shell. | Worm. Total Accuracy (%)

Anal. 170 368 76 51 2 0 9 | 0 0 677 25.11
Back. 129 359 63 6 6 0 1 9 9 1 583 61.57

DoS 862 1,569 | 748 557 57 12 66 62 105 51 4,089 18.29
Expl. 946 1,858 | 1,081 [ 5,440 | 261 8 263 560 372 341 11,132 48.86
Fuzz. 328 877 164 107 1,710 0 1,898 231 724 23 6,062 28.20
Gene. 20 42 94 329 41 18,172 36 21 80 36 18,871 96.29
Norm. | 1,877 33 103 169 | 3,335 2 30,330 | 432 674 45 37,000 81.97
Reco. 85 175 76 22 25 4 75 2,885 125 24 3,496 82.52
Shell. 0 0 0 3 10 0 12 52 300 1 378 79.36
Worm. 0 0 0 1 1 0 I 1 6 34 44 T7.27
Total [ 4,417 | 5,281 | 2,405 | 6,685 | 5,448 | 18,198 | 32,693 | 4,254 | 2,395 556 82,332 | Average: 73.05%

where average classification accuracy is 75.29% and 96.43%
with UNSW-NB15 and CICIDS, respectively. Note that the
value at row i and column j indicates the number of samples
that belong to the attack label i are predicted as class j.
In Table VIII, some classes with high performance include
Exploit, Generic, Normal, whereas the classification model
does not well detect certain attach types, such as Analysis,
Backdoor, DoS, and Worms. Tables XI and XII explicitly
show precision, recall, and F1 scores that can be computed
from the confusion matrix.

We believe that the performance difference among the attack
classes is greatly related to the imbalance problem of the
data set since the classification model tends to be trained
such that the output mostly belongs to a majority group.
According to [32] to address the imbalance issue, we can apply
resampling the training data set (e.g., upsampling the minority
instances or downsampling the majority ones) or modify the
classification model (e.g., the cost function, threshold value,
one-class learning).

We have applied the random upsampling on some minor-
ity classes such that each attack type in the training set has
more than 10000 samples. After training the classification
model with the newly created training data set, the confu-
sion matrix on the test set of UNSW-NBI15 is collected and
presented in Table XIII. There is a significant increase in
classification accuracy for the minority classes, e.g., accu-
racy for Analysis, Backdoors, and DoS gains by around 25%,
57%, and 14%, respectively, compared to the case with-
out the resampling method. However, the performance rather
decreases in some classes (i.e., Exploits and Fuzzers) due
to a possible lack of physically different samples for these
classes. In summary, it is important to have enough actual
data samples to construct a classification model with high
classification performance. Thus, when deploying NIDS in
practice, we should frequently collect samples especially for
minority classes to update network parameters and to enhance
classification accuracy.

V. CONCLUSION

To construct a robust yet efficient NIDS, we have proposed
a neural network architecture that consists of a stacked AE
with feature extraction and neuron pruning, and a following
classifier network. By tightly coupling feature extraction and
neuron pruning, a bare AE network has effectively been spar-
sified, leaving only effective neurons and edge connections

among them. We have verified the effectiveness of our pruned
AE network with feature extraction in a unsupervised manner
on two real-world network traffic data sets.

Once our condensed AE network has shown a higher recon-
struction quality compared to several state-of-the-art pruning
approaches, we have extended the AE network to an intrusion
detection system architecture by connecting the pretrained AE
network to a classifier network. We have demonstrated that our
algorithm for both two-label traffic abnormality detection and
multilabel attack type classification outperforms the state-of-
the-art algorithms, or shows the similar performance compared
with them, in terms of classification quality, while significantly
reducing the number of parameters and the number of oper-
ations with a factor of up to 19. This result implies that our
lightweight NIDS architecture is well-fit to edge devices with
a small computation and memory usage.

For future work, it would be interesting to implement our
lightweight network intrusion detection architecture directly
on an FPGA-based dedicated switching hardware (e.g., using
the P4 framework), in order to support the data plane pro-
grammability for fast traffic inspection and response in the
packet switching level.
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