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Abstract—As intelligence recently moves to the edge to tackle
the problems of privacy, scalability, and network bandwidth in
the centralized intelligence, it is necessary to construct an effi-
cient yet robust deep learning model viable at edge devices, which
are usually volatile in wireless links and device functionality. The
intensive computation burden for deep learning at the edge side
necessitates some level of parallel processing via acceleration.
We propose EdgePipe, a deep learning framework based on deep
neural networks (DNNs) with a mixture of model parallelism and
pipeline training for high resource utilization over volatile wire-
less edge devices. To tackle the volatility problem in wireless links
and device functionality, a concept of super neuron is defined to
be a group of neurons across adjacent layers, which is the basis
of model partitioning at edge devices. The relatively loss-resilient
neuron structure prevents the entire forward or backward train-
ing paths from being totally broken down due to only some
intermittent link or device failure caused by one or few devices.
Furthermore, we design a subsequent pipeline training mecha-
nism based on the prior super-neuron-based model partitioning
for fast convergence with more training data in a fixed time-
line. The experimental results have demonstrated that EdgePipe
outperforms several counterpart algorithms including PipeDream
under the volatile wireless lossy or device malfunctioning envi-
ronments, while preserving the low interlayer communication
overhead.

Index Terms—Distributed deep learning, edge device, model
parallelism, pipeline parallelism, volatile wireless links.

I. INTRODUCTION

DEEP neural networks (DNNs) have actively investigated
for use in a wide range of application areas, such as

classification, image recognition, and natural language pro-
cessing. The size of neural networks has increased to a total
of 10–20 million parameters, necessitating the use of sig-
nificant amounts of computational resources, and the use
of approaches, such as parallel processing via multilevel
accelerators to facilitate efficient learning.

To make deep learning scalable in a distributed setting, par-
allelized DNN training can be used. This approach involves
dividing the training data or the neural networks into subdata
shards or submodel shards, respectively, [1], [2]. Data paral-
lelism enables simultaneous learning using multiple processes,
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by replicating a neural network, leading to an acceleration
of processing time caused by processing different data shards
on different servers or GPUs in parallel [3], [4]. However,
this approach suffers from the requirement for ongoing com-
munication among the replicated models to synchronize the
model parameters in a central server [5], [6]. Some researchers
have investigated algorithms for model parallelism that par-
titions a deep model into multiple submodels and allocates
these models to different servers or GPUs [7], [8]. Although
this approach reduces storage, computation, and communi-
cation overhead, the sequence of cross-device computations
in the forward and backward passes should be performed in
order, and still incurs a communication overhead. Since model
parallelism may cause problems of resource underutiliza-
tion, this approach parallelism does not necessarily guarantee
improvement of training efficiency.

To resolve the resource underutilization problem, pipeline
parallelism is introduced to facilitate the fast training of
DNNs [9]–[13]. Each forward or backward pass is consid-
ered to be a single pipeline stage, an approach which enables
multiple devices to function concurrently. Although these par-
allel approaches are designed to run large-scale DNNs based
on powerful servers or GPUs in a distributed manner, the
issue of general, yet more challenging, edge intelligence has
not been discussed in detail [14], [15]. Edge devices tend
to be resource constrained and communication-fragile due to
the low-power wireless properties of transmission and recep-
tion, so the edge computing environment makes parallelism
in deep learning challenging [16], [17]. The existing pipeline
parallelism has been mostly explored assuming the existence
of wired interconnection units, such as servers or GPUs.
Unreliable network connectivity due to, for example, the lack
of some required transport layer support can incur substantial
overhead at the edge level, and can lead to learning instability
and the generation of invalid inferences. Model parallelism in
deep learning at the edge therefore poses a new challenge: to
develop a volatility-resilient parallel structure at the level of a
network of resource-constrained edge devices [18], [19].

In this article, we propose EdgePipe, a hybrid parallelized
deep learning framework based on model parallelism with
pipeline acceleration over volatile edge networks. As a hybrid
parallelism, we aimed to achieve stable yet cost-effective
learning at fragile wireless networks without any transport
layer support, through salient partitioning in the level of
neurons across layers, as shown in Fig. 1. Each device is
allocated a set of selective neurons, which should be resilient
against volatility, and computes their activity in forward and
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backward passes. On top of model parallelism, we further
leveraged pipeline parallelism, and reduced the training time
at the edge by increasing the utilization of multiple workers
(i.e., devices).

To identify a relatively loss-resilient neuron structure,
we introduce the concept of a super neuron, which is a
basis for allocation of edge devices to DNNs. A model
is partitioned into partial submodels to the edge, based
on the super neuron by discovering the optimal mapping
between the device-to-device communication network topol-
ogy and super-neuron-based neural network topology. After
the neuron-to-device allocation, we accelerate the training pro-
cedure via pipeline scheduling that computes the forward and
backward passes alternately in an efficient, distributed man-
ner. Since a series of subsequent data can be inserted and
processed before a previous data item is fully processed at the
end of the backward pass, EdgePipe complements the unsta-
ble intermittent interconnectivity by engaging devices based
on a super-neuron-based network structure, with substantial
reduction in training time.

To the best of our knowledge, this is the first paper to tackle
the problem of pipelined model parallelism with DNNs in
volatile wireless edge devices. We demonstrated that EdgePipe
is a feasible approach to distributed deep learning under lossy
wireless environments. The main contributions of this work
can be summarized as follows.

1) We present an efficient neuron-to-device allocation
based on the concept of a super neuron that is a resilient
partitioning structure for edge DNNs against unreliable
wireless dynamics.

2) We adopt a pipeline approach to concurrently process a
series of minibatch data within the edge network, achiev-
ing high accuracy, while reducing the training time, even
when undergoing communication failures.

3) Based on extensive experiments, we have demonstrated
that EdgePipe outperforms several important counterpart
algorithms including PipeDream, in volatile wireless
lossy or device malfunctioning environments, 2.47 times
faster than Model Parallelism with 2.13 times higher
inference than the core mechanism obtained from
PipeDream [20].

II. RELATED WORK

Our work is a part of federated learning, to a novel problem
space, which is wireless lossy networks of edge devices.
To complement the innately slow training at the edge due
to resource or communication volatility and constraints, our
approach is applied with pipeline acceleration.

A. Federated Learning

To process deep learning on multiple devices, training data
are split into multiple subtasks using data parallelism [1]. Data
parallelism is the process of replicating the network model
on multiple devices, where each device trains a subset of the
training data [21]–[23]. Some researchers have exploited task
parallelism with data parallelism, which is optimized for use
with memory parallel computers [24]. Accelerator [25] solves

the problem of general-purpose usages of GPUs by apply-
ing data parallelism. Since data parallelism involves holding
a copy of the complete network model, it can be applied to
any deep learning architecture. As the neural networks become
large, a single device cannot store the full network model. The
model parameters need to be synchronized among devices,
causing heavy communication overhead. As the number of
training devices increases to accelerate learning, the com-
munication overhead becomes a critical issue. Therefore, to
overcome the problem of synchronization, some researchers
have investigated parameter transfer management [4]–[6].
AdaComp [26] introduces data parallelism with a parameter
server into edge–device networks.

To solve the problem of the feasibility of large-scale models
at the edge, model parallelism has been studied by partitioning
a learning model among devices [8], [27]. Since the memory
footprint can be reduced due to model partitioning, model par-
allelism enables large-scale training on resource-constrained
edge devices [28]. Some heuristic algorithms have used
partitioning algorithms based on computational graphs in
TensorFlow [29], [30]. However, in model parallelism, since
a forward pass for new data can start to be processed after the
backward steps of its precedent training batch are completed,
only one device works at a time, and it cannot contribute to
training speedup. To accelerate model parallelism, Layerwise
Staleness and DSP [7] have been tried, to solve the straggler
issue by training each partitioned model independently. Large
amounts of communication are needed among training devices
to share the intermediate computational results. Recent work
has combined model parallelism and data parallelism, in an
approach called hybrid parallelism [31]–[34].

B. Pipeline Acceleration

Although data and model parallelism approaches aim to
facilitate the learning of large networks over end devices,
they are still not able to fully utilize the given resources.
By borrowing ideas from pipelines, some researchers
have leveraged learning acceleration into model paral-
lelism [9], [10], [12], [13]. This approach enables fast learn-
ing, in which the devices are efficiently utilized, while each
device holds only a subset of the model. PipeDream [20]
brings the pipeline framework into deep learning passes in
practice. This approach partitions the layers between multiple
GPUs, and allows each device to process one forward and
one backward pass repeatedly. By designing a series of for-
ward and backward passes to overlap over the devices, some
limited computational resources can be optimally utilized.
To solve the issue of parameter staleness which arises in
PipeDream, SpecTrain [35] predicts future weights, maintain-
ing rapid learning. Recently, GPipe [36] has facilitated faster
learning by reducing idle time by splitting minibatches into
microbatches. HetPipe [37] divides GPUs into a group of vir-
tual workers by applying both model and data parallelism.
The intravirtual workers process pipelined model parallelism,
while the intervirtual workers parallelize the training data. To
facilitate learning, XPipe [11] separates data into finer batches,
and minibatches are split into microbatches.
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However, these parallelism methodologies rely on the exis-
tence of a reasonably stable network connection among the
computing devices and internal GPUs. As on-device learn-
ing is more common with edge devices, wireless connectivity
poses a new, challenging but interesting, problem. More
closely related to our problem, edge computing has been
widely investigated in mobile-edge offloading [38]–[40]. Some
researchers have considered DNN partitioning to optimize
resources across edge servers for AI-based applications in
the user equipments [41]. Although these mobile-edge devices
are supposed to be wirelessly connected, the innate instabil-
ity of the wireless link connection has not been considered
to date. The existing approaches to on-device learning have
focused only on the wireless communication between the
parameter server and the end devices with the complete
network model [14], [42], [43]. In this study, we introduced a
model-partitioning-based distributed learning approach using
edge devices in a volatile wireless network, without maintain-
ing any centralized parameter synchronization. We present a
resilient partitioned model based on the concept of a super
neuron and address the transmission failure problem along
with pipeline acceleration.

III. SYSTEM MODEL

We present a distributed deep learning scheme using
multiple edge devices over wireless links. In a lossy network
environment, not only the risk of managing the unstable neural
networks, but also the peer-to-peer communication overhead
should be considered in order to implement a distributed deep
learning system. To tackle this problem, we suggest a sim-
ple yet efficient model partitioning approach to construct a
wireless network-optimized DNN model.

We overcome the problem of resource underutilization in
model parallelism and the lag in the learning process due to
the possible connection or device loss caused by the inherent
nature of edge devices, by applying pipeline scheduling. The
hardware efficiency is enhanced by keeping the pipeline as
full as possible. Thus, the learning model can be established
earlier even under dynamic lossy networks. We address two
key questions: 1) what is a desirable partitioning basis for
edge devices considering the volatile network connectivity?
and 2) how can the training of the neural networks, partitioned
over the devices, be parallelized to achieve fast training or high
throughput with more training data?

We assume that edge devices are wirelessly connected
via a low-power wireless radio link, such as IEEE 802.11
or 802.15.4, while not using any centralized Cloud access. As
our work is based on model parallelism, all of the data sets are
assumed to be independent and identically distributed (i.i.d).

We aimed to reduce the training time by overlapping
the computation of multiple resources, while constructing
a desired learning model. From the perspective of edge
networks, the model is designed to alleviate in-flight data
failure with reasonable interlayer communication. We assume
that edge devices can communicate with other devices using
a wireless radio such as IEEE 802.11, and all of the data sets
are i.i.d.

Fig. 1. System overview of EdgePipe that exploits pipeline parallelism for
edge DNNs over a volatile wireless network.

Our distributed deep learning framework, EdgePipe, takes a
hybrid approach to combining model parallelism and pipeline
parallelism for scalable and volatile learning at the edge under
some level of uncertainty in the device-to-device connection,
as illustrated in Fig. 1. EdgePipe consists of two procedures,
as follows: 1) model parallelism and 2) distributed learning
using a pipeline.

1) Model Parallelism: To solve a DNN problem with a
group of edge devices, we partition a DNN into partial
subnetworks. By allocating a partial subnetwork of suit-
able interlayer neurons to a device, with neither purely
vertical nor purely horizontal allocation, we prevent the
neurons in a single layer from being grouped and pro-
cessed with a single device, while also reducing the
transmission overhead during training. The partial sub-
networks are distributed to edge devices each finding
its own best-matching device. At the initial setup phase,
we select the best centrality node as a temporary device
coordinator. The selected device coordinator profiles the
neural network structure and performs model partition-
ing based on the partitioning basis of a super neuron,
for constructing a volatility-resilient learning structure.

2) Distributed Learning With Pipeline Scheduling: Once
the neurons are assigned to the edge devices, we incor-
porate a pipeline scheduling over the forward and
backward passes. Once an edge device receives partial
computational results from a neighboring device, which
is in charge of a group of neurons located at the prior
layer, it continues to compute the feed forward calcula-
tion in the forward pass, or the gradient in the backward
pass, and sends it to a neighboring device in charge of
the next layer.

IV. MODEL PARALLELISM

To tailor deep learning to distributed low-end edge devices,
it is essential to reduce the computation and storage overhead
at the edge, for sustainability. Particularly, in a volatile wire-
less network in which edge devices are usually formed using
device-to-device network connections, it is important to under-
stand a durable model partitioning structure that can prevent
global breakdown in the learning paths due to intermittent link
or device failures. We aim to derive a way to efficiently par-
tition and allocate a neural network model, which is resilient
and cost-effective in volatile edge networks.
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(a) (b) (c)

Fig. 2. Neural network partitioning into a group of super neurons to make a distributed DNN resilient to the uncertainty of the communication network. The
red, blue, and cyan lines denote the forward, backward, and output sharing passes, respectively. (a) Vertical allocation. (b) Hybrid allocation. (c) Horizontal
allocation.

As an initial partitioning setup, EdgePipe selects a device
coordinator that is supposed to perform a model partitioning
by taking into account the device-to-device connectivity sta-
tus and the workloads at the devices. We choose a device with
the highest network centrality measure as the coordinator in
the distributed learning setup for the edge devices. Among
various network centrality measures, the classic closeness cen-
trality [44] based on the expected number of transmissions
considering the packet reception rate, which has been recog-
nized as a general metric with which to measure the link
quality, is adopted. This is because the shortest-path-based
decision result should be efficiently spread from the coordi-
nator to the other devices in the wireless environment. After
the coordinator discovers a suitable set of neurons, the coor-
dinator informs all of the edge devices of the result of the
preliminary configuration, indicating which parts of the neural
networks should be partitioned and then allocated to a specific
edge device.

A. Neural Network Partitioning

We suggest a cost-effective, training-stable partitioning
scheme for lossy wireless networks. Under volatile wireless
link dynamics, if all neurons from a single layer are allocated
to one or a few devices, the layer can be entirely lost or dras-
tically damaged, and the forward and backward learning in
subsequent layers can be seriously impaired.

To reduce the layer-to-device dependency as far as possible,
we introduce a concept of a super neuron (Fig. 2); a group
of neurons operating across adjacent layers. The super neu-
ron is designed to be a basis for neuron-to-device allocation
of tasks. By grouping the neurons located in adjacent layers
and assigning them to a device for a later distributed learning
process, the cross-layer forward and backward learning passes
can be viable within a single device, despite the volatility in
wireless links. Super neurons acting across adjacent layers can
contribute to reducing the interlayer communication overhead.

To form a set of super neurons in a DNN across Llayers
layers, we propose a key parameter, Mlayers, as the maximum
number of contiguous layers in which the neurons in a super
neuron are located, for a specific device. We classify the model
partitioning into three categories with respect to Mlayers, where
1 ≤ Mlayers ≤ Llayers as follows.

1) Vertical Allocation: This type of allocation occurs when
the maximum number of contiguous layers of which
a device takes charge is met; that is, Mlayers = 1.
In Vertical allocation, each device is supposed to take
charge of the neurons from a single layer, as shown
in Fig. 2(a). In the worst case, the forward and backward
learning paths in a DNN can be totally collapsed due to a
complete loss at a single layer caused by communication
failure to or from a responsible device. PipeDream [20],
GPipe [36], and GNMT [45] belong to this category in
which the communication volatility is not seriously con-
sidered because they have assumed an almost lossless
GPU-to-GPU network environment.

2) Hybrid Allocation: Hybrid allocation takes place when
the maximum number of contiguous layers per device
is larger than 1, i.e., 1 < Mlayers < Llayers. In Hybrid
allocation, each device takes in charge of the neurons
across adjacent layers, with better continuity in the
learning process, while reducing some possible unnec-
essary interlayer communication overheads, as shown in
Fig. 2(b). EdgePipe uses the Hybrid allocation to con-
struct a viable model partitioning in DNNs in volatile
wireless networks.

3) Horizontal Allocation: In contrast to Vertical alloca-
tion, Horizontal allocation allows each device to be in
charge of the neurons located over all of the layers
of a DNN, where Mlayers = Llayers, as in Fig. 2(c).
If many devices are involved in forward and back-
ward passes over unnecessarily long consecutive lay-
ers, the communication overhead can be significant.
More seriously, since the computational results may
be lost for many device-to-device communications in
the middle of training, the computed gradients can-
not be successfully transmitted to the next layer in the
backward pass. Another critical drawback occurs when
the horizontal allocation structure cannot benefit from
pipeline acceleration, which will be discussed in the next
section.

We present a simple yet efficient heuristic algorithm that
partitions a two-phase hybrid process of dividing a model first
horizontally into layers, and then vertically into neurons, as
described in Algorithm 1. Given the constraints of the number
of neurons at each layer, the maximum number of contiguous
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Algorithm 1 Model Partitioning
1: Function model-partitioning (Llayers, Mlayers, Nneurons: # of

neurons in neural network in list, Ndevices: # of devices)
2: if isDeviceCoordinator() == TRUE then

// I. Split in the level of layers
3: allocatedLayer[1 : �2/Ndevices�] = �Llayers/�Ndevices/2��;
4: allocatedLayer[end − (Llayers − Mlayers × �Ndevices/2�) +

1 : end]+ = 1;

// II. Allocate # of devices in proportion to # of layers
5: for idx = 1 : length(allocatedLayer)
6: allocatedDevice[idx] = rounding(Ndevices/Llayers×

length(allocatedLayer[idx]));
7: end for

// III. Split in the level of neurons for each layer
8: SN = [ ]; // allocated neurons
9: for w = 1:length(allocatedLayer)

10: h = 1;
11: for l in allocatedLayer[w]
12: nneurons = Nneurons[l];
13: ndevices = allocatedDevice[w];
14: allocatedNeuron

= task-division(nneurons, nneurons/ndevices);
15: SN[w][h].append([l, allocatedNeuron]);
16: h = h + 1;
17: end for
18: end for

// IV. Map device topology and super neuron topology
19: deviceOrder = device-mapping(SN, Ndevices);
20: Assign SN[w][h] to deviceOrder[idx];
21: else
22: Receive the task from deviceCoordinator;
23: end if
24: end Function
25: Function task = task-division (ntask: # of tasks, Mtask: maximum

# of tasks)
26: task = [ ]; // list of allocated layers
27: n = ntask;
28: while n > 0
29: if n ≥ Mtask then
30: task.appendleft([n − Mtask + 1:Mtask]);
31: n = n - Mtask;
32: else
33: task.appendleft([1:n]);
34: n = n − n;
35: end if
36: end while
37: end Function

layers per device Mlayers and the number of whole layers
Llayers, the model can be split initially by grouping from the
output layer as follows:

Mlayers = ⌊
Llayers/�Ndevices/2�⌋ (1)

where Ndevices is the number of devices. The complete network
is divided into �Ndevices/2� of Mlayers layers. The remaining
layers Llayers − Mlayers × �Ndevices/2� are equally assigned
one by one (since the number of the remaining layers is
always smaller than �Ndevices/2�). If there are a sufficient
number of devices (Ndevices ≥ 2 × Llayers) that multiple
devices can take charge of a single layer together, Hybrid
allocation becomes Vertical allocation, which can be accel-
erated by pipelining. In the case of two or three devices
(Mlayers = Llayers ⇔ �Ndevices/2� = 1), Hybrid allocation

becomes horizontal allocation, that allows a single device to
take charge of neurons across layers.

In Fig. 2(b), we partition a model with six layers into six
devices by allowing a maximum of two layers to a device,
where Nneurons = [10, 8, 8, 8, 8, 10], Llayers = 6, Ndevices = 6,
and Mlayers = �6/�6/2�� = 2 with the hybrid allocation
algorithm. First, the model is split into 2, 2, and 2 layers
(allocatedLayer = [[1, 2], [3, 4], [5, 6]]) at the level of lay-
ers. Then, we assign the number of devices in proportion to the
number of layers, meaning that two devices are allowed to pro-
cess up to two layers, (allocatedDevice = [2, 2, 2]). Finally,
we partition at the level of neurons equal to the number of
devices, for task balancing.

To make DNN scalable for low-performing edge devices,
our partitioning scheme contributes to reducing the load of
dense layers, which accounts for most of the computation
time [46]. Other types of layers, such as convolution layers
or pooling layers, which generally lead to high performance,
can be leveraged based on a layerwise allocation in the con-
volutional neural network (CNN). Our work mainly focuses
on dense layers, which are computationally intensive, but can
feasibly be stacked in most DNNs, including CNNs.

B. Neuron-to-Device Allocation

Once a DNN model is partitioned into a set of super neu-
rons, the number of which is the same as the number of
devices, we solve the problem of super neuron-to-device map-
ping considering volatile device-to-device wireless dynamics.

In a general setting, some super neurons need to communi-
cate with each other frequently, whereas other pairs need only
intermittent or almost no communication. A salient mapping
decision for super neuron-to-device may dominate the success
or failure when learning a DNN model operating under volatile
wireless links.

First, we calculate the relative connectivity ratio of a specific
super neuron-to-super neuron link out of all possible pairs and
form a directed graph with the weight of the relative impor-
tance ratio in the range [0, 1]. For example, in Fig. 2(b), the
total number of training passes from Device 3 to Device 4
is 2; one from the forward pass and one from the backward
pass. Out of all possible links, the maximum number of train-
ing passes is three, at the logical links of Device 5-to-Device 6
and Device 6-to-Device 5 for one forward pass, one backward
pass, and the result sharing pass at the output layer. To give a
higher priority to a super neuron link with higher connectivity
to another super neuron, we normalize each weight with the
maximum number of training passes out of all possible links.
The calculated exemplary super neuron topology is provided
in Fig. 3(c).

Then, given a device-to-device network topology [Fig. 3(a)]
and the calculated super neuron topology [Fig. 3(c)], we
finally identify the optimal mapping between the device-device
network topology and the super neuron topology. We imple-
ment a simple genetic algorithm that determines the minimum
edit distance between two topologies, as in Algorithm 2. The
network topology devNet is presented with a directed graph
based on the packet reception ratio (PRR) between devices in

Authorized licensed use limited to: Ewha Womans Univ. Downloaded on November 05,2022 at 00:36:53 UTC from IEEE Xplore.  Restrictions apply. 



11638 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 14, JULY 15, 2022

(a) (b)

(c)

Fig. 3. Neuron-to-device allocation for a neural network with six layers
using six devices spread over 50 × 50 m2. (a) Device-to-device network
topology based on PRR. (b) Super neuron-to-device mapping after allocation.
(c) Relative connectivity of super neuron network topology.

the range of [0, 1], while the super neuron topology SNNet
is described with another directed graph based on the rela-
tive connectivity ratio between super neurons in the range of
[0, 1]. We continue to compute an elementwise product based
on the Hadamard product [47] between two directed graphs
by reordering the device sequence and select the shorter dis-
tance over generations. Finally, a topology mapping with the
largest elementwise sum of the Hadamard product is reached,
as illustrated in Fig. 3(b).

V. ACCELERATION OF DISTRIBUTED LEARNING

Our proposed model parallelism allows edge devices operat-
ing over volatile wireless links to train a DNN by partitioning
it into partial submodels based on a new neuron group struc-
ture, a super neuron, which is resilient to the innate link
volatility. However, only with the model parallelism, the dis-
tributed neural network may converge slowly, due to the
constraint of limited computational resources at the edge
and also some possible training losses caused by link losses
between the devices.

In a distributed learning scenario, as long as an edge device
releases its local forward or backward computation involved
with its allocated super neuron for a certain minibatch data,
it can process the incoming computation for the next mini-
batch data. This approach means that, if a well-designed
learning schedule at the level of each device and its entire
device group is ready, there exists the opportunity for multiple
devices to process the learning procedures at the same time,
via parallelism.

We apply a pipeline mechanism to the super-neuron-based
model partitioning for wireless DNN training, in order to sig-
nificantly reduce the training time. Each worker (i.e., device)
arranges its own schedule according to the allocated layers,

Algorithm 2 Neuron-to-Device Mapping

1: Function topology-mapping (Ndevices: # of devices, SNNet: super
neuron topology, devNet: device-to-device network topology)

// I. Get the initial population of element-wise sum of
Hadamard Product

2: bestNet = devNet;
3: bestHP = element-sum(SNNet ◦ bestNet);

// II. Reproduct the next population
4: for generation times

// II-A. Randomly reorder the network
5: randOrder = random-permutation(Ndevices);
6: randNet = reorder-nodes(bestNet, randOrder);
7: randHP = element-sum(SNNet ◦ randNet);

// II-B. Swipe the network
8: swipeOrder = [2:Ndevices, 1];
9: swipeNet = reorder-nodes(bestNet, swipeOrder);

10: swipeHP = element-sum(SNNet ◦ swipeNet);

// II-C. Find the maximum summation of elements in
Hadamard product of device network and super neuron network

11: if randHP == max (randHP, swipeHP, bestHP) then
12: bestNet = randNet;
13: bestHP = randHP;
14: else if swipeHP == max (randHP, swipeHP, bestHP) then
15: bestNet = swipeNet;
16: bestHP = swipeHP;
17: end if
18: end for
19: devNet = bestNet;
20: end Function

by alternating the forward and backward passes. During the
pipeline training process, when a device receives intermediate
computation results from the one or more devices in charge
of its prior layer, it processes the forward or backward com-
putation. Then, it broadcasts the updated result to the devices
in charge of its next layer.

A. Pipeline Scheduling

We train a series of minibatch data in parallel by borrowing
a pipeline scheduling idea from PipeDream [20]. Let us define
the forward computation of layer j for the ith data as FWi

j and
the backward as BWi

j. For example, the training paths for data
10 in a vanilla neural network with three layers can be repre-
sented as [FW10

1 → FW10
2 → FW10

3 → BW10
3 → BW10

2 ]. It
should be noted that at BW10

1 , there is no backward compu-
tation needed in the input layer. Then, a device alternates the
forward passes over the allocated layers in ascending order
and the backward passes in descending order, for data i where
i = 1, 2, . . . , as follows:

FWi
l1

→ FWi
l2

→ · · · → FWi
lwn

→
BWi−P+w

lwn
→ BWi−P+w

lwn−1
→ · · · → BWi−P+w

l1
(2)

over the contiguous timeslots soon after data i starts to
be processed in the forward pass, where l1, . . . , lwn ∈
allocatedLayer[w] in the ascending order, P is the number
of stages or layers in the super-neuron-based network for
the device mapped with SN[w, h] at the wth layer of the
super-neuron-based network, and the hth (1 ≤ h ≤ H) hor-
izontal super neuron at the wth layer in the network, under
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Fig. 4. Pipeline scheduling with an example of a super-neuron-based
partitioned network in which the number denotes the data ID i.

the relationship of Llayers = P · Mlayers. The case of BWi−P+w
ln

where i − P + w < 1 is considered to be a pipeline stall.
To use the parameters as late as possible, a device mapped
with SN[w, h] has �w−1

idx=1length(allocatedLayer[idx]) stalls at
the beginning. As another stall case, since there is no com-
putation required at the input layer during the backward
passes, one stall occurs at the last backward pass of BWi

1.
For example, as in Fig. 2(b), Device 4, which is located at
SN[2, 2] in the super-neuron-based network, takes in charge
of the layers of {3, 4}, and the pipeline schedule starts with
�w−1

idx=1length(allocatedLayer[idx]) = 2 stalls, where the val-
ues of P and Mlayers are 3 and 2, respectively. Then, it proceeds
to perform the forward and backward computations, accord-
ing to (2) with a sequence of [stall → stall → FW1

3 →
FW1

4 → BW0
4 (stall) → BW0

3 (stall) → FW2
3 → FW2

4→ BW1
4 → BW1

3 → · · · ], as also illustrated in Fig. 4.
Theorem 1 (Acceleration Time Complexity): To process

Ndata minibatch data with a neural network of Llayers lay-
ers with the super neuron allocation with Mlayers, EdgePipe
requires a total number of timeslots of

2Llayers + 2Mlayers(Ndata − 1) − ncut = O
(
Ndata · Mlayers

)

where ncut is 1 for nonhorizontal allocations and Ndata for the
horizontal allocation.

Proof: For nonhorizontal allocations, the last stage in
the input layer for the backward pass does not need to
be computed. The processing latency for the first minibatch
data is Llayers for the forward pass and Llayers − 1 for the
backward pass. From that time on, the nonhorizontal allo-
cations need additional timeslots with 2 · Mlayers to process
each additional minibatch data. For the Horizontal, alloca-
tion which cannot utilize any pipelining schedule since one
device should involve all of the computation over all of the
layers, the processing latency for each minibatch data is given
by 2Llayers − 1, and the total number of timeslots is given
by (2Llayers − 1) · Ndata.

Theorem 2 (Acceleration by Super Neuron Structure): The
training time in a distributed DNN can be reduced via a
pipeline schedule with a factor of O(Llayers/Mlayers) = O(P),
where P is the number of pipeline stages in a super-neuron-
based network.

Proof: Given a fixed number of minibatch data for train-
ing, the total learning time is given by O(K · Mlayers) =
O(K′ · Mlayers/Nlayers). The reduction ratio in time is given by
O(1/(K′ ·Mlayers/Nlayers)) = O(K′′ ·Nlayers/Mlayers) = O(K′′ ·P)

where Nlayers = P · Mlayers. The distributed DNN training can
be accelerated according to the number of pipeline stages in
the super-neuron-based network.

B. Distributed Learning Over Volatile Links

The training data are split into a set of minibatch data. Each
minibatch data is injected from the input layer controlled by
a specific device or devices. In the forward pass, each device
computes the intermediate results and propagates them to the
devices in charge of the next layer. In the backward pass, the
devices compute the gradients and pass them to the devices in
charge of the preceding layer. For the device-to-device com-
munication, each device broadcasts a packet in which the
intermediate results are embedded in the packet payload, and
the device and data IDs are stored in the packet header.

In a lossy wireless environment, the layer-to-layer trans-
mission over the forward and backward passes can be lost.
Given a calculated pipeline schedule, each device receives the
results by a certain time, starts its subsequent computation, and
shares it with surrounding devices by broadcast. Based on the
pipelined schedule, if the next target data arrive, the device
stops waiting and processes the current task. When some par-
tial information has been received from a certain device, the
corresponding information is treated as null, and the process
is continued.

Since multiple minibatch data are being processed in the
pipeline scheduling, correct decisions about which parameters
are to be used and updated is required. We design each device
to use the most recent parameters for the forward pass, and
reflect the calculated gradients to the most recent parameters
for the backward pass, similar to [20]. The weight parameter
for data i, W[i] is calculated as follows:

W[i] = W[i − 1] − γ∇f (W[i − (P − w + 1)]). (3)

For example, in Fig. 4, when Device 4 is about to perform
the calculation for data 4 in the forward pass, it uses the most
recent weight, which has just been updated after backpropa-
gating for data 2. Then, the computed gradients are used to
update the weight parameter at data 3.

During backpropagation, a device responsible for a certain
layer is able to calculate the gradients only if it receives all
of the losses from its next layer. This means that if there
is any transmission failure in its preceding backward pass,
we cannot update all of its subsequent backpropagation. For
this reason, Horizontal allocation has a high risk of failure
in learning since it requires many device-to-device communi-
cations between two adjacent layers. The vertical allocation
can also be critically flawed, in the case when a device in
charge of a whole layer loses communication with surrounding
devices in the adjacent layers. In this context, the hybrid allo-
cation in EdgePipe would outperform other allocations with
the existence of volatile wireless links.

VI. EVALUATION

We implemented EdgePipe using TensorFlow 1.15.0 in
Python 3.7. We used the data sets of MNIST [48],
Fashion-MNIST [49], EMNIST [50], and CIFAR-10 [51]
with 60 000, 60 000, 60 000, and 50 000 training data, respec-
tively, and 10 000 testing data to validate our proposed scheme.
We primarily present the experimental results obtained using
the Fashion-MNIST data set, unless otherwise noted. A DNN,
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TABLE I
SIMULATION ENVIRONMENT AND PARAMETERS

as mainly used in the experiments consists of one input layer
and five dense layers with four hidden layers of 128 neurons,
combined with a ReLU activation function and a gradi-
ent descent optimizer. The learning rate for the optimizer
is 0.01, and a batch size of 100 is used. We used softmax
cross-entropy with logits as the loss function. For efficient dis-
tributed learning, since the optimizers that need the intralayer
communication may incur excessive costs, we used the basic
optimizer.

For the main experimental environment with wireless edge
devices, the simulated network consists of six edge devices
which are randomly distributed over 50 × 50 m2, as in shown
Fig. 3(a). We used a combined path-loss shadowing model [52]
with a path-loss exponent of 3.1, a reference loss of 46.68 dB,
and an additive white Gaussian noise N (0, 82), resulting in an
average PRR of 80.9 % between devices. The PRR between
two devices is measured by sending 50 packets and count-
ing the number of successfully transmitted packets within
communication range. Although there are some other pos-
sible quality measures, we adopt the PRR, a simple and
widely used link quality measure, instead of packet loss, which
is directly related to network throughput [53]. The whole
test environment is described in Table I. For matrix opera-
tions, we computed the output signal as if the input signal
is received as 0 upon transmission failure in the forward
passes. We ran 100 testing runs and calculated the average
performance and the standard deviation. To run the neuron-
to-device mapping algorithm, 1000 generations are executed
until the Hadamard product is achieved in the steady state
with the use of six devices. The larger the number of devices,
the longer the network takes to saturate, due to the higher
number of interconnected links. In the case of more than six
devices, 10 000 generations are run.

We compared the performance results of Hybrid allo-
cation in EdgePipe with three other counterpart allocation
schemes: 1) Vertical: 1-Forward-1-Backward pipeline schedul-
ing and weight stashing that takes the core mechanism from
PipeDream [20]; 2) Horizontal; and 3) Naive: vanilla DNN

TABLE II
AVERAGED EXECUTION TIME FOR TRAINING WITH TEN TRIALS ON

RASPBERRY PI 2 MODEL B IN MS (I: INPUT, H: HIDDEN,
AND O: OUTPUT LAYER)

TABLE III
EMPIRICAL TIMESLOT DURATION, THE NUMBER OF TIMESLOTS,
TRAINING EPOCHS, BATCH STEPS, AND THE TOTAL NUMBER OF

PROCESSED BATCH DATA FOR A DNN WITH SIX LAYERS USING

SIX DEVICES DURING 194 MIN, WHEN THE TRAIN LOSS

OF Naive BECOMES LOWER THAN 0.5

running in a single device. Beyond the allocation, we investi-
gated the scheduling efficiency using: 1) Model: a counterpart
parallelism scheme based on model parallelism only, with-
out pipeline acceleration and 2) GPipe: microbatch training
from GPipe with the assumption of Vertical allocation for its
expected full pipeline speedup by dividing a minibatch into the
same number of microbatches as the number of devices [36],
and another counterpart neuron-to-device mapping method,
Random, which randomly maps the super neuron to the device.

To obtain the physical time range for the basic timeslot
defined in pipeline scheduling, we measured the computation
time taken to perform the computational tasks at a layer with
its adjacent layer for the forward and the backward passes in a
real-world edge device platform, Raspberry Pi Model B with
900-MHz quad-core ARM Cortex-A7 CPU and 1-GB RAM
on Raspbian OS (Table II). For GPipe, the execution time is
measured based on a Vertical allocation [20], by dividing by
the number of microbatches. Since a fixed timeslot is required
for pipelining scheduling, a timeslot is fixed to be the summa-
tion of the worst case computation time over all of the possible
cases at a layer along the forward and backward passes, and
the device-to-device transmission time with some time mar-
gin. For the communication time, the worst case transmission
time with a low-power wireless interface of IEEE 802.15.4 is
calculated as follows:

(
Mpkt × 32 bits/signal

) ÷ 250 kb/s (4)

where Mpkt is the maximum number of intermediate out-
puts; 784, 392, and 131 for Vertical, Hybrid, and Horizontal,
respectively.

By taking into account the worst case latency in both com-
putation and communication with a margin of 100 ms, a
timeslot time for each allocation used for training was deter-
mined (Table III). For example, the worst computation time
in Hybrid is 161.15 ms in the forward pass from an input
layer to the first hidden layer, and the communication time
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(a) (b) (c)

Fig. 5. Performance on training loss and test accuracy with respect to the training time, measured every 0.1 epochs. (a) Train loss with respect to time.
(b) Test accuracy with respect to time. (c) Averaged successful layer-to-layer propagation rate.

is (392 × 32 bits/signal) ÷ 250 kb/s = 50.18 ms, resulting in
161.15+50.18+100 = 311.33 ms in total. Although Vertical
has a longer processing time, it can process more batches with
the help of a pipeline. Horizontal distributes neurons from a
single layer to all of the devices and, therefore, it cannot fully
utilize acceleration. Our Hybrid has an advantage over both
Vertical and Horizontal. Since Naive takes place in a single
device, the transmission time is not counted. GPipe based on
a Vertical allocation takes more communication overhead, due
to the smaller size of transmitted microbatches instead of mini-
batches, with a factor of the number of splits. Based on this
approach, the entire training time in the edge network is cal-
culated by counting the number of timeslots required for each
allocation type.

A. Distributed Learning

We validated EdgePipe in the aspects of model partition-
ing, neuron-to-device mapping, and pipeline scheduling. First,
we investigated training loss and test accuracy in a network
with two different link statuses: 1) without any link failure
and 2) with link failures, against Naive, Vertical [20], and
Horizontal, as in Fig. 5(a) and (b). In an ideal environment
without any communication failures during a fixed training
time, EdgePipe (w/o Failure) surpasses Naive, which does not
have any failure either, by taking advantage of pipelining and
making a model converge earlier, while all of the approaches
show almost same training and testing performance. In a
real-world environment, wireless link volatility badly affects
the training and testing performance with major spikes in
degradation over time. Hybrid in EdgePipe shows relatively
stable training and testing performance with lower spikes than
Vertical, reaching a higher testing accuracy than Horizontal,
but falling slightly short of its own ideal version, Hybrid with-
out failure. Vertical shows very unstable performance over
time, due to the risk of complete loss of intermediate out-
puts, while Horizontal is almost untrained, leading to the worst
test accuracy performance, since the training model failed to
converge due to the frequent backpropagation failures.

We examined the way in which the layer-to-layer propa-
gation path survived under link failures for each algorithm,
as shown in Fig. 5(c). Overall, Vertical propagates the learn-
ing update from one layer to another over the forward and

backward passes in the average sense. This is because its
inherent device-to-device communication across adjacent lay-
ers is relatively low compared to those of the other approaches.
However, if a device in charge of a whole layer becomes inac-
tive in the worst case, the entire learning process is collapsed,
showing the issue of instability. This observation implies that
as the network becomes versatile, Vertical has a high risk of
training degradation. However, when a DNN model is parti-
tioned in a horizontal way, there are relatively more distinct
device pairs in charge of the adjacent layers, resulting in exces-
sive transmission costs and, thus, the gradient computation
would likely fail upon any single transmission loss, blocking
the entire training run. Furthermore, the horizontal allocation
structure cannot utilize pipeline acceleration. This situation has
the important implication that distributing the neurons across
somewhat long consecutive layers to a single device should
be prohibited in a wirelessly connected edge device network.
In the case of Hybrid, although it sometimes shows unsuc-
cessful layer-to-layer propagation performance, particularly at
the backward passes, some effective neurons across adjacent
layers for each device turn out to be resilient to the volatility,
keeping up relatively stable training progress.

We varied the maximum number of layers in the super neu-
ron, Mlayers, in Fig. 6. To investigate the way in which each
pipeline scheduling results in the reduction of training, the
training time is quantified based on the number of timeslots
spent, until the same amount of training process is reached at
epoch 20, as shown in Fig. 6(a). Vertical takes full advantage
of pipeline speed-up by dividing the pipeline stage into the
finest level, having six pipeline stages from the input layer
to the output layer, whereas Horizontal cannot benefit from
pipelining at all. Although Horizontal consumes more times-
lots until 20 epochs than other allocation schemes, the timeslot
duration is shorter, resulting in a reasonable training time. Our
Hybrid approach is positioned between these two extremes and
shows performance competitive with that of Mlayers = 2, while
spending only 249 min for training with 3.75 packet transmis-
sions per second on average at each Raspberry Pi-level device.
We demonstrated that pipeline parallelism achieved consider-
able improvement, in test accuracy by reducing the training
time with a factor of training speedup in both Vertical and
Hybrid allocations.
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(a) (b) (c)

Fig. 6. Performance on training timeslots, communication overhead, and test accuracy with respect to Mlayers. (a) Training overhead until 20 epochs. (b) Test
accuracy and transmission cost with respect to Mlayers at 194 min (c) Cumulative distribution with respect to test accuracy at 194 min over 100 test runs.

Fig. 7. Effect of pipeline acceleration in EdgePipe.

Regarding the distributed neuron structure for edge devices
in Fig. 6(b), Hybrid with Mlayers = 2 shows the best and most
stable performance compared to Vertical and Horizontal, with
a performance gap of 18.05 % and 67.25 %, respectively. We
verified that our Hybrid allocation tries to invest at least two
devices in charge of single layer from (1), not only taking
advantage of pipeline acceleration but also showing resilience
with a few spikes. If we take a closer look at the test accuracy
distribution according to Mlayers, as in Fig. 6(c), as the number
of allocated layers, Mlayers, increases, an allocation scheme is
likely to have training failures on the backpropagation passes
between adjacent layers. In the case of Vertical, if even a
single failure occurs in one of the intermediate passes, the
ongoing calculation to the subsequent layers totally collapses,
showing a binary distribution. This implies that there exists a
suitable selection of the maximum number of layers of which
a device needs to take charge. A super-neuron-based network
across adjacent layers contributes to making a distributed DNN
relatively less fragile under uncertainty.

We validated the component of learning acceleration based
on pipeline parallelism in EdgePipe, compared to model par-
allelism only without pipelining, and the microbatch-based
parallelism of GPipe, as shown in Fig. 7. We show the dynam-
ics of test accuracy with respect to the training time. The
training time is converted from the number of epoch counts, as
shown in Table III. We demonstrated that pipeline parallelism
achieved great improvements in test accuracy by reducing the

training time with a factor of 2.47 training speedup, com-
pared to Model Parallelism to achieve the same inference
performance (>80.0 %). GPipe partitions the model across
the layers and, thus, shows similar performance to that of
our Vertical allocation since the microbatch-based parallelism
of GPipe needs to rely on Vertical allocation for its highest
pipeline acceleration. For this reason, GPipe shows relatively
unstable learning performance with sudden accuracy drops
over time. This observation indicates that the way in which
the model is partitioned is a key factor in volatile learning,
and the pipeline approach contributes to accelerating learning.

Horizontal allocation falls behind compared to the other
allocations, since the training model failed to converge, due
to the frequent backpropagation failures. There also exists
a tradeoff between pipeline speed-up benefit and real-world
link volatility, Vertical used the highest pipeline efficiency, but
becomes fragile under the volatility, while Horizontal cannot
take advantage of the pipeline, but maintains stable training
under volatility. EdgePipe with Hybrid allocation shows rela-
tively more stable learning, compared to the microbatch-based
parallelism of GPipe.

We implemented different neuron-to-device allocations to
investigate the way in which a neuron-to-device mapping
scheme affects training (Fig. 8). Our genetic algorithm for
finding a mapping from a device-to-device network topol-
ogy to a super-neuron-based network topology plays a key
role in stable training taking only 2.86 s for six devices on
a Raspberry Pi 2 Model B. It is compared against Random,
which randomly maps between two topologies over five trials,
and Upper, which identifies the mapping by trying out all pos-
sible cases in a brute-force manner, and is considered to be the
upper bound. In the case of Vertical, our mapping algorithm
generates the device deployment with Upper. As indicated in
Fig. 8, our mapping scheme outperforms Random in all of the
partitioning cases, and shows similar learning performance as
Upper. Specifically, Vertical shows a dramatic performance
gain, where the number of effective links is relatively small.
This finding implies that it is important to extract the “skele-
tons” of wireless links. When all of the device-to-device
connections are necessary, as in Horizontal allocation, the
algorithm has similar training progress. By analyzing the
experimental results from Figs. 6–8, we can conclude that
both the super neuron structure and the super neuron-to-device
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(a) (b) (c)

Fig. 8. Dynamics with respect to neuron-to-device allocation. (a) Vertical. (b) Hybrid. (c) Horizontal.

(a) (b) (c)

(d) (e) (f)

Fig. 9. Effects of various network configurations (where the average PRR (%) is shown in parentheses) and failure recovery schemes. (a) Degree of link
volatility in training. (b) Degree of link volatility in testing. (c) Different device distribution in training. (d) Network RoI size in training. (e) # of edge devices
in training. (f) TX recovery scheme in training.

mapping with pipeline acceleration are essential components
for designing edge DNNs, in order to achieve high stable
performance with fast training time, which is boosted by
pipelining.

B. Resilience Under Various Learning Environments

To inspect the resilience under various learning environ-
ments, we tested EdgePipe with different various network
configurations (Fig. 9). First, we verified how EdgePipe can
endure different degrees of link volatility by varying the
path-loss exponent to form different network PRRs over the
same device-to-device topology, with a specific path-loss expo-
nent used for both training and testing [Fig. 9(a)], and with
various path-loss exponents only at testing with the path-loss
exponent of 3.1 used at training [Fig. 9(b)]. Hybrid retains
the highest performance in most cases, and is not seriously

affected under even worse network situations, whereas Vertical
is severely damaged by network conditions.

We investigated the test accuracy under different device dis-
tributions [Fig. 9(c)]. Even though the same edge resource
is deployed in the same territory area, the node distri-
bution produces a high variation in network connectivity;
Vertical is markedly affected, with a 28.8 % performance gap.
However, Hybrid allocation maintains relatively stable infer-
ence, with a 13.76 % performance gap between the best and
the worst cases, across different node distributions, outper-
forming Vertical by a factor of 1.58 at most. The edge-side
learning is highly dependent on the wireless volatility, and
constructing a stable learning architecture in a lossy environ-
ment is essential. The experimental results shown in Fig. 9
have demonstrated that the device topology does affect the
PRR, causing severe deterioration in a distributed learning
architecture with Vertical allocation.
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(a) (b) (c)

Fig. 10. Effects of different structures in a network model. (a) Number of layers in a DNN. (b) Number of layers and devices in a DNN. (c) Training model
using CNN.

As the size of network Region of Interest (RoI) increases,
as in Fig. 9(d), or the number of devices decreases, as in
Fig. 9(e), the devices are located more sparsely, and packet
transmission among them becomes less successful. Therefore,
in the case of Hybrid allocation, the inference performance
becomes degraded due to training failure caused by link fail-
ure, whereas Vertical has an even lower performance due to
more frequent failures at the intermediate passes in testing.
This situation means that Hybrid with more training could
alleviate the degradation, even under poor connectivity, while
Vertical becomes inferior due to its innate inference break-
down. In the same context, although Vertical becomes as
reliable as Hybrid given sufficient resources with stable con-
nectivity for learning and inference, the fluctuating links can
cause severe deterioration in a distributed learning architecture
with Vertical allocation. This finding implies that edge-side
learning is highly dependent on wireless volatility, and con-
structing a stable learning architecture in a lossy environment
is essential.

For a given RoI, we investigated how adding device
resources affects test accuracy, by varying the number of edge
devices, as shown in Fig. 9(e). Hybrid performs well, and bet-
ter than Vertical and Horizontal when some minimum number
of devices are available, with a performance gap of 25.98 %
and 64.02 %, respectively, using four devices. When a suffi-
cient number of devices is used, Vertical becomes similar to
Hybrid, sharing the neurons from a single layer with other
devices. Vertical becomes as reliable as Hybrid with sufficient
device resources for learning and inference.

To investigate the way in which different transmission
recoveries can improve performance with additional packet
overhead, we used some transmission (TX) recovery schemes:
1) r-TX: a simple redundant transmission scheme with two
consecutive times and 2) ACK: a multiple retransmission
scheme until acknowledgement is successfully received. Those
link recovery schemes are supposed to show the same accuracy
performance in an ideal failure-free environment. The original
EdgePipe without any link recovery called Ours is compared
with those with r-TX and ACK, respectively, for each dif-
ferent allocation, as in Fig. 9(f). The link failure has been
compensated for increasing the test accuracy from 80.01 %
to 84.62 %, and to 85.97 %, while investing more transmis-
sion with a factor of 2.0 and 2.16, respectively. However, the

proposed Hybrid allocation of EdgePipe performs well even
under network volatility, without the help of additional link
recovery. This result implies that forming a resilient neuron
group structure is the key to designing a reliable yet effi-
cient distributed learning framework despite network volatility.
EdgePipe offers a concrete way to provide such a benefit,
thanks to the super neuron structure.

C. Feasibility and Scalability of EdgePipe

We examined in-depth resilience performance under differ-
ent learning environments from the perspectives of different
neural network models (Fig. 10). By varying the number of
layers in a DNN structure given the same number of devices,
as shown in Fig. 10(a), both Hybrid and Vertical maintain
high performance using the same number of devices with link
failures. When the number of layers becomes deeper than six,
using six devices, a single device mostly takes charge of a
whole layer in Vertical, and the model would probably col-
lapse, even with a single link failure between adjacent layers.
With the limited resources, as the neural networks become
larger, Hybrid leans toward Horizontal to prevent the inference
failure from allocating the whole layer to a single device. At
the same time, as Hybrid moves relatively away from Vertical
and loses its pipeline acceleration to some degree, Hybrid
ends up with slower training performance than Vertical, but
finally achieves higher test accuracy performance, in most
cases. We validated the consistency of our approach using the
same amount of resources by investing the same number of
devices as the number of layers. As illustrated in Fig. 10(b),
Hybrid outperforms the other allocation schemes under fair
resource conditions.

We also investigated our scheme based on a different
network model, which is CNN [Fig. 10(c)]. We used three
convolution layers and four fully connected layers, where the
number of filters in the first convolution layer is 32, and the
number in the other layers are 64 with a size of 3×3. The max-
pooling layers with a size of 2×2 are stacked after the second
and third convolution layers. A stride of 2 is used. CNN
achieved better performance than DNN, with a performance
improvement of 2.52 % in w/o Failure, 4.32 % in EdgePipe,
and 5.70 % in Model (which is an EdgePipe version without
pipeline acceleration). Since CNN allows the achievement of
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(a)

(b)

Fig. 11. Effect of different data sets with (a) DNN and (b) CNN, respectively.

stable high performance much faster than DNN (with 50 min
training, the accuracy reaches at 80.14 % with CNN and
67.23 % with DNN), Model that does not utilize pipeline
acceleration performs well, while EdgePipe outperforms the
one without pipeline acceleration.

We validated EdgePipe over various data sets using both
DNN and CNN (Fig. 11), in terms of accuracy. As in both
Fig. 11(a) and (b), although EdgePipe performs a little worse
than its ideal version without any communication failures
due to the innate volatility, it still shows very competitive
performance better than the model parallelism-only approach.
Assuming an ideal failure-free environment, EdgePipe denoted
as w/o Failure shows accuracy similar to that of Naive which
is free from any communication issue, with only 194 min of
training, thanks to pipeline acceleration. Furthermore, when
CNN is employed instead of DNN, as shown in Fig. 11(b),
our EdgePipe scheme performs well on various data sets,
with some convolution and pooling layers with CNN, achiev-
ing up to 97.64 %, 85.38 %, 83.33 %, and 54.68 % with
respect to the data set under the fragile network topology,
while matching or even outperforming, the performance of
Naive via the training speedup. Due to the inherent strength of
the convolutional layers, CNN achieves better inference than
DNN. However, it should be noted that CNN is one type of
DNN, which also includes dense layers. It implies that elabo-
rate partitioning of the computationally intensive dense layer
is essential in model parallelism, and additional layers, such

(a) (b)

Fig. 12. EdgePipe in a real-world wireless testbed. (a) Real-world device
deployment testbed. (b) Dynamics of train loss and test accuracy.

as convolutional layers or pooling layers can be stacked, if
necessary.

Finally, we evaluated EdgePipe based on real-world wire-
less measurements at a 20 × 20 m2 testbed inside a university
building using six TinyOS-based TelosB motes using the
IEEE 802.15.4 radio (Fig. 12). The average PRR during the
initial 1000 transmissions reached 71.62 %, and was used for
neuron-to-device mapping. We verified that our Hybrid alloca-
tion with pipelining still offers feasible learning and inference,
with the performance up to 78.98 % during 194 min, even
under real-world wireless networks.

VII. DISCUSSION

The experimental findings in this work raise several
interesting follow-up discussions.

A. On-Device Learning With Link Volatility

As the intelligence moves to the end devices, on-device
learning at resource-constrained and wireless edges makes
the problem itself even more complicated [19], [54]. As
demonstrated in Fig. 9, although the same amount of
resources is used in federated learning, both training and
inference are heavily affected, due to the lossy connec-
tion. Since the volatile wireless characteristics degrade dis-
tributed learning, the well-known existing distributed learning
approaches [9], [20] cannot be directly applied. Wireless
communication overhead is vital to the power consumption,
making edge-side learning more challenging. To cope with
the uncertainty in device-to-device communication, model par-
titioning based on neurons across some consecutive layers to
each device, along with pipeline acceleration, turns out to be
effective, maintaining high prediction performance.

B. Implications

1) Vertical Versus Horizontal: As a DNN model is parti-
tioned in a Horizontal way, there are relatively more distinct
device pairs in charge of the adjacent layers and, thus, the
gradient computation would fail with high probability upon
any single transmission loss. As explicitly shown in Fig. 6,
the severe performance degradation in Horizontal, which has
very low performance even for the best case, comes from the
fact that the overall training has completely failed. The hori-
zontal allocation structure cannot utilize pipeline acceleration,
either. We can derive an important implication that distribut-
ing the neurons across somewhat long consecutive layers to a
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single device should be prohibited in a wirelessly connected
edge device network.

When a DNN model is instead partitioned in a Vertical way,
a distributed deep learning structure can fully utilize pipeline
acceleration, achieving shorter training times and higher accu-
racy compared to the others, by compensating for the link
failures. However, the Vertical structure turns out to be very
fragile, since a transmission loss from a single device usually
in charge of a whole layer, breaks down all of the ongoing
computation across the remaining preceding layers. As shown
in Fig. 6, since this structure has shown very low worst case
performance, the vertical allocation becomes more vulnerable
at the inference phase.

2) Desirable Partitioning: Based on the implication
between vertical and horizontal partitioning, a suitable mix-
ture between vertical and horizontal in a hybrid way offers
relatively more stable learning and inference performance in
volatile wireless networks. As indicated in Fig. 2, desirable
model partitioning needs to be positioned toward Vertical to
obtain layer-to-layer propagation, cost reduction, and accelera-
tion benefit from pipelining, but still preventing a single device
from being involved with the whole layer. Thus, Hybrid allo-
cation is derived as in (1), to involve at least two devices with
a single layer, while making the model as vertical as possible.

3) Neural Network-to-Device Allocation: As the device-
to-device connectivity varies within a wireless network, dis-
tributing partitioned networks to a suitable device is a very
important step, as shown in Fig. 3. As the forward and
backward passes should be executed in order, it is impor-
tant to allocate a strongly connected pair of devices into the
adjacent layers. Thus, the neural network-to-device alloca-
tion procedure should be derived considering not only neuron
groups across some adjacent layers to a device but also
the device-to-device connectivity in a network topology, for
designing high-quality distributed learning.

VIII. CONCLUSION

We have presented EdgePipe, a novel pipelined model par-
allelism framework resilient to volatile edge networks. The
proposed scheme introduced a versatile allocation structure,
the super neuron, by partitioning the model at the level of
both layers and neurons. We exploited a pipeline paradigm
into model parallelism to compensate for delayed learning due
to the wireless failures. We have demonstrated that EdgePipe
constructs a reliable deep learning model and achieves stable
inference under a lossy environment.

In future work, we may consider the staleness of the param-
eters in pipelining, to accelerate the learning process. Since
the model suffers from consecutive backpropagation failure, it
would be interesting to design a semioptimizer that can pro-
cess a local update based on partial information. Extensive
work that attempts to validate the idea using a range of neu-
ral network architectures, such as convolution networks or
recurrent networks, will be an important future research direc-
tion. To tackle the inherently fluctuating connectivity among
the devices more actively, some post-adjustment effort could
alleviate network volatility variation in future work.
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