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Abstract—In the era of edge computing and Artificial Intel-
ligence (AI), securing billions of edge devices within a network
against intelligent attacks is crucial. We propose PUFGAN, an
innovative machine learning attack-proof security architecture,
by embedding a self-adversarial agent within a device fingerprint-
based security primitive, public PUF (PPUF) known for its strong
fingerprint-driven cryptography. The self-adversarial agent is
implemented using Generative Adversarial Networks (GANs).
The agent attempts to self-attack the system based on two GAN
variants, vanilla GAN and conditional GAN. By turning the
attacking quality through generating realistic secret keys used
in the PPUF primitive into system vulnerability, the security
architecture is able to monitor its internal vulnerability. If the
vulnerability level reaches at a specific value, PUFGAN allows
the system to restructure its underlying security primitive via
feedback to the PPUF hardware, maintaining security entropy
at as high a level as possible.

We evaluated PUFGAN on three different machine environ-
ments: Google Colab, a desktop PC, and a Raspberry Pi 2, using
a real-world PPUF dataset. Extensive experiments demonstrated
that even a strong device fingerprint security primitive can
become vulnerable, necessitating active restructuring of the
current primitive, making the system resilient against extreme
attacking environments.

I. INTRODUCTION

As the growth of edge computing technology accelerates,
computer systems with distributed computation and network-
ing capabilities have been developed. The widespread adoption
and deployment of edge devices – devices such as routers and
routing switches which provide entry points into enterprise
or service provider core networks – across various categories
of connected home devices, medical devices, and healthcare,
has raised critical security threats. These threats include the
potential for breaches of privacy data, or the ability for
malicious system access and control. Insulin pumps or smart
locks can easily be hacked, due to the relatively vulnerable
authentication systems used in these devices [24]. Securing
edge devices with low-end computing, storage, and networking
is essential to their success.

To protect edge devices from potential threats in distributed
network environments, the use of a lightweight yet strong
cryptographic function in the system architecture level is
essential. To mitigate the computational overhead incurred
by software-based cryptography, hardware fingerprint-based
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approaches that can significantly reduce the burden of com-
putation have been proposed as one of the most promising
security primitives for low-end devices. In particular, the use of
physically unclonable functions (PUFs) [18] is an innovative
way of exploiting the unique hardware characteristics of
devices, which are created during their integrated circuit (IC)
fabrication process, as a strong device authentication signature.

Various sophisticated PUF predecessors have been pro-
posed [1], [14], including public PUF (PPUF) that can ef-
fectively be integrated with end-to-end data encryption for
IoT devices. However, these approaches can be vulnerable
to adversarial attacks based on machine learning algorithms
such as Support Vector Machine (SVM), Random Forest (RF),
and Deep Learning (DL) techniques [4], [6], [12]. Attackers
may succeed in recovering a single secret key from public
information using brute force, and continue to obtain more
data sample pairs of secret key-to-public information; that
is, challenge and response pairs. At a certain point, even
complex cryptographic relationships can be approximated with
a reasonable precision, and the system can be hacked.

In this paper, we propose an innovative attack-proof security
methodology and architecture, exploiting a deep generative
model based on Generative Adversarial Networks (GANs) [7],
[8] using a dedicated hardware based on PPUF. We embed one
of the most advanced deep learning-based attack models into
a self-adversarial agent for internal vulnerability monitoring.
When the vulnerability level is found to exceed a specified
limit, the system generates feedbacks, and restructures its
hardware fingerprint security primitive, in order to maintain
as high a security level as possible.

Our work addresses two main questions and provides
concrete answers based on extensive empirical experiments:
1) how vulnerable can a system become as security-related
information starts being exposed externally; and 2) when is it
important to restructure a system’s security primitive, given
that it may potentially be exposed to the most advanced
machine learning attack environments.

Without assuming any predefined security features, our
proposed self-adversarial agent comprises two neural net-
works: a generator network, and a discriminator network.
The generator network aims to learn and generate realistic
challenge-response pairs (CRPs), while the discriminator net-
work learns to distinguish real CRPs from fake CRPs. The
two networks compete with each other, and converge at a



specified equilibrium point, at which the generator produces
real but hidden CRPs that can totally destroy the fingerprint-
based cryptography.

To the best of our knowledge, this paper is the first to
apply a self-adversarial agent using a state-of-the-art GAN
framework with a fingerprint-based security architecture to
make the system self-adaptive to harsh, dynamic environments.
The main contributions can be summarized as follows:

• We develop one of the most intelligent AI-based hacking
efforts using a PPUF-based fingerprint security primitive,
and conduct extensive empirical experiments.

• Our work converts knowledge about the internally ob-
tained vulnerability into a design asset for building a
highly defensible edge security architecture. We exploit
one of the most sophisticated AI algorithms, GAN,
to design a self-adversarial agent that performs self-
vulnerability diagnosis.

• We suggest simple yet efficient methods to restructure the
underlying fingerprint security primitive for maintaining
a vulnerability that is as low as possible, while adapting
in such a way as to produce stable security resilience and
attack prevention.

II. RELATED WORK

Our work is part of the discipline of security systems in
which device fingerprint-based cryptography is tightly coupled
with self-adaptive security enhancement.

A. Device Fingerprint-Based Security
In comparison with complicated software cryptography-

based security approaches, a device itself can be used as a
highly distinct fingerprint, distinguishable from other similar
devices, ensuring lightweight yet strong security identification.
Some physical measures from accelerometer sensors [22], 3D
magnetic sensors [10], network behavioral profiling [2], or
RF signals [5], [15] can be turned into unique identification
signatures. Specifically, the radio fingerprint-based security
approach uses its radio chip as a unique security primitive
without requiring additional dedicated hardware [3], [23].

A more generalized innovative security primitive, physically
unclonable functions (PUFs) [18], has recently been intro-
duced, and has attracted considerable attention in the security
community. The variability that inevitably occurs during the
IC hardware fabrication process can be used as an innate
authentication method for a device. A more advanced PUF
variation, public PUF (PPUF) [1], has been shown to be a
practical way to implement end-to-end data encryption in edge
networks [14].

However, this fingerprint-based security, that has been
shown to have higher security than other classic approaches,
may also be vulnerable to advanced intelligent attacks such as
impersonation or machine learning techniques [4], [6].

B. Self-Adaptive Security
Current computer systems operate in dynamic, heteroge-

neous, and distributed network environments, and their se-
curity architecture tends to incorporate self-adaptive security
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(a) PPUF logic

Gate Input 1 
Delay (𝜇𝑠)

Input 2 
Delay (𝜇𝑠)

A 4.62 64.02
B 32.48 515.79
C 32.94 2.05
D 64.97 4.05
E 4.10 64.73
F 65.78 1030.47

(b) Gate delay measure-
ment of PPUF logic
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- Initialize by input 𝐶଴
- Select PPUF operation time 𝑡
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𝐶 ൌ ሺ𝑐ଵ, … , 𝑐௠ሻ
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(c) End-to-end data encryption procedure
Fig. 1. Device fingerprint security architecture using public information and
a PPUF-based communication procedure

components within the system [20]. To identify whether an
event or action observed in a system is malicious, model-
based and machine learning-based methodologies are used
to detect malicious behaviors, on the assumption that they
arise mostly from external sources. Such model-based de-
tection [17], [19] exploits an explicit form of signature or
rule that can differentiate malicious from normal behavior.
Machine learning-based methods [16], [21], on the other hand,
use supervised or unsupervised learning techniques for the
detection of malicious intrusions. Once malicious behaviors
are detected via either methodology, these algorithms update
security policies or reconfigure application parameters. More
closely related to our work, some recent studies [9], [25]
have tried to identify some complex patterns using GAN-based
approaches.

Self-adaptive security has not been applied to edge secu-
rity architecture. Further, self-adversarial agent-based security
with vulnerability awareness has not been studied. Our work
takes a new research direction, combining a deep neural
network-driven self-adversarial security adaptation algorithm
with fingerprint-based edge device security architecture.

III. SYSTEM ARCHITECTURE

We present PUFGAN, a self-adversarial security architec-
ture for edge devices. Although device fingerprint-based cryp-
tography provides new opportunities for designing lightweight
yet reliable security systems, intelligent machine learning
attacks may reproduce even unknown secret keys from partial
fingerprint-related information. Our work aims to integrate
a machine learning-based attack model that can be located
internally or externally within a network, to produce a device
fingerprint security architecture. The self-adversarial agent is
to continuously diagnose vulnerability for a system and then
restructure the device fingerprint hardware at a certain point if
necessary for maintaining the vulnerability as low as possible.

A. Motivation
Public PUF is known to be a lightweight yet reliable

device fingerprint-based security primitive for edge devices.
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Fig. 2. Self-adversarial agent over PPUF-based security architecture

The challenge – the input of fingerprint hardware – is used
as a secret key. The response – the corresponding output – is
used as the public key. As illustrated in Fig. 1(a), the unique
output response is determined by three factors: 1) the inherent
PPUF hardware characteristics; 2) the input challenge; and 3)
the measurement time of output.

Even if the elements of the response – the measurement
time as well as the gate delay table (Fig. 1(b)) – that can
be captured from reverse engineering are public information,
only the PPUF device owner can quickly recover the original
challenge for a specific item of information. Attackers who
have obtained the gate delay table for the target device need
to simulate all possible transition cases along each stacked
stage in order to achieve secret key recovery, a process which
takes exponentially increasing time.

A legitimate user can be distinguished using the time gap
between the PPUF execution time and the PPUF simulation
time. This innovative idea can be applied to end-to-end en-
crypted data transmission in networks, as in Fig. 1(c). A sender
that wants to deliver data to a legitimate receiver uses the
receiver’s public information to encrypt and then sends the
data. Only a legitimate user, who owns its dedicated PPUF
logic can recover the original challenge, which is the secret
key used and discarded at the sender side, and use it to decrypt
the data.

Even though the challenge in a challenge-response pair
(CRP) is discarded in order to guarantee security in end-to-
end encryption, attackers with high-performance computing
capability may collaborate with each other in order to recover
the original challenge from public response information using
a brute-force approach.

If more challenge-response pairs become disclosed after
attackers’ repeated hacking efforts, the underlying mapping
distribution between challenge and response, the core of the
security primitive, may be captured at some point using
machine learning approaches. Once a probabilistic guess for
a possible challenge can damage the entire end-to-end en-
cryption, the overall security architecture may be jeopardized.
Thus, to make any security architecture highly reliable, it is
crucial for the system to constantly monitor its own security
vulnerabilities against intelligent machine learning attacks.

B. Threat Model
Our self-adversarial security system aims to prevent po-

tential attacks. It is assumed that attackers are capable of

recovering an original challenge from an exposed response
by calculating and iterating the response for every possible
challenge. The recovered challenge-response pairs can be
aggregated at an attacking host. The attacking host may apply
any of a number of machine learning techniques to infer the
original challenges from even unknown responses, based on
possible patterns extracted from the available CRPs, and can
finally disable the entire PPUF fingerprint-based cryptography.

C. Self-Adversarial Security Architecture
To defend an edge security architecture from highly in-

telligent attacking efforts, we take a bold approach by im-
plementing a self-adversarial agent within the architecture
itself. The self-agent tries to extract the underlying mapping
distribution from current exposed challenge-response pairs,
and starts generating realistic challenge-response pairs that are
not even used yet, but turn out to be real.

Our security architecture involves three phases. We first
produce a generic model, which learns from a set of training
CRPs, and then identify the relationship between challenge and
response during a training phase. The trained model is then
used to generate all possible challenge-to-response pairs. The
vulnerability of the current security architecture is constantly
monitored. If the vulnerability level exceeds a certain limit,
the currently used fingerprint primitive is restructured, in
order to maintain the highest entropy in the fingerprint-based
cryptography.

IV. GAN-BASED SECURITY SYSTEM

When subjected to intelligent machine learning-based at-
tacks, some crucial cryptographic patterns, even using one of
the strongest fingerprint-based security primitives, can be dis-
closed. To tackle potential intelligent threats on edge devices,
we exploit state-of-the-art Generative Adversarial Networks
(GANs), one of the most effective deep generative models,
to implement an attack-proof agent in the edge security
architecture (Fig. 2).

We design a self-adversarial agent within a PPUF-based se-
curity architecture to perform three main tasks: 1) to generate
realistic CRPs for a given PPUF security architecture, as close
as possible to the data distribution of the actual CRPs; 2) to
analyze system vulnerabilities based on synthetic accuracy;
and 3) to restructure the underlying security primitive at times
of high vulnerability.

A. Background on GAN
Machine learning has been widely used to make predictions

from data. Learning techniques can be categorized into two
classes: supervised and unsupervised. Supervised learning
models use labelled training data and predict the labels of
unseen testing data (e.g., classification or regression). On
the other hand, unsupervised learning identifies previously
unknown patterns without using pre-existing labels (e.g., clus-
tering).

Generative Adversarial Networks (GANs) are a promising
class of generative models for unsupervised learning. Using



both real and fake training data, a generic model is trained to
capture a general distribution and at the same time, generate
realistic fake data. GANs can also discover unknown or
unexplored features. This ability can be used to tackle the
problem of limited training data via data augmentation, in a
persistent way. Since GAN can be used to emulate nearly any
kind of data, it has great potential for applications in a variety
of fields.

GAN operates through competition between a generator
network and a discriminator network. The key function of
the generator is to fabricate fake data that should be as real
as possible, by mimicking real data distributions, while the
discriminator is used to distinguish fake from authentic data.
Each neural network should be trained to have the lowest loss
with respect to its respective purpose and converge to its best
performance. The generator starts producing fake data almost
indistinguishable from real ones, so that it can even deceive the
discriminator. At the same time, the discriminator is optimized
to classify those data correctly.

This system is a minimax problem, in which the discrimi-
nator tries to maximize the probability of not being deceived,
whereas the generator tries to minimize the probability by
making its best effort to deceive the discriminator. The min-
imax problem can effectively be solved with various deep
learning architectures.

B. Self-Adversarial Agent with GANs
We instantiate a self-adversarial agent by adding a GAN

architecture into the PPUF security framework. A PPUF-based
GAN model is used to generate realistic CRPs, of which
few challenge-to-response pairs are unused yet authentic, and
therefore able to break the fingerprint cryptography. We pose
a worst-case question: if past CRP samples for a given PPUF
logic are exposed due to system malfunction or data breach,
how vulnerable is the system?

We develop two neural networks: a Generator Network
and a Discriminator Network in the self-adversarial agent. A
generator network G produces fake CRP Xfake from input
noise samples Z, such that Xfake = G(Z). As the generator
network, G, is trained, G(Z) follows the same distribution as
the training data of real CRP, Xreal. The discriminator network
D examines CRP samples to discriminate whether they are
real or fake. Both real and fake CRP are fed as training data
into the discriminator, so it learns to classify them into two
classes: 1 for real CRP, or 0 for fake CRP, using supervised
learning.

To investigate how differences in GAN architecture can
affect hacking efficiency, we implement two GAN variants:
Vanilla GAN [8] and conditional GAN [13].

1) Vanilla GAN with PPUF (v-PUFGAN): Vanilla GAN
is the original GAN, the simplest form with which the two
players, generator and discriminator, play a minimax game.

We construct a challenge-to-response pair as a single train-
ing datum, X = [c1, · · · cm, r1, · · · , rm]T where the challenge
of [c1, · · · , cm] for its corresponding response of [r1, · · · , rm]
is fed into the vanilla GAN input, as in Fig. 3(a).
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Fig. 3. Two GAN architectures for hacking the PPUF fingerprint primitive

The objective function of the vanilla GAN is as follows:

min
G

max
D

V (D,G) = EX⇠pdata(Xreal)[logD(X)]

+EZ⇠pZ(Z)[log(1�D(G(Z)))]
(1)

where E is an estimator, and pdata(Xreal) is the true distri-
bution of the CRP data, while pZ is the distribution of input
noise variables, and D(G(Z) is a fake response Xfake.

2) Conditional GAN with PPUF (c-PUFGAN): The con-
ditional GAN is a conditional version of the original vanilla
GAN, created by feeding additional data into both generator
and discriminator.

To make a PPUF-based cryptographic security totally vul-
nerable, the self-adversarial agent should predict the correct
responses for all possible challenges. We use the challenge
information as the condition, and construct a conditional GAN
model within the agent, as shown in Fig. 3(b).

By setting the condition of challenge into the original
objective function of vanilla GAN as in Eq. (1), the objective
function of the conditional GAN can be defined as follows:

min
G

max
D

V (D,G) = EX⇠pdata(Rreal)[logD(X|C)]

+EZ⇠pZ(Z)[log(1�D(G(Z|C)))]
(2)

where pdata(Rreal) is a true distribution of real responses for
a given challenge C, and G(Z|C) is fake response Rfake,
produced the generator network G.

Our PUFGAN architecture includes a training process with
the following steps:

• We generate a fake CRP based on G(Z) for the vanilla
GAN and G(Z|C) for the conditional GAN, which is a
random sample with a random initial distribution in the
generator network G.



• After both the real and fake CRPs are fed into the
discriminator, D, a binary classification neural network,
we calculate the cross-entropy loss based on the original
correct labels of 0 for fake CRP and 1 for real CRP.

• The generator G also calculates the cross-entropy loss
where the loss is created when the previously generated
fake CRP is correctly classified by the discriminator as
fake.

• The loss information propagates back to its respective
neural network and the network learns to adjust its
weight parameters to minimize the loss through a gradient
descent optimization, such as an Adam optimizer [11].

• We iterate the above steps until convergence, when the
generator G operates closely as D(G(Z)) ⇠ 1 where
G(Z) = Xfake, while at the same time the discriminator
D does closely as D(Xfake) ⇠ 0 and D(Xreal) ⇠ 1.

The algorithm is described in detail in Algorithm 1.
Algorithm 1 PUFGAN: GAN-based Self-Adversarial Agent
1: Input: revealed CRPs
2: Parameter: vulnerability threshold ✓risk

3: while TRUE do
4: vulnerability = self-diagnosis (revealed CRPs);
5: if vulnerability � ✓risk then
6: Restructure the fingerprint-based hardware device;
7: end if
8: end while

9: Function self-diagnosis (revealed CRPs)
10: for # of training epochs do

// I. Generate fake data
11: Z ⇠ U(a, b): input noise samples;
12: Xfake  G(Z): generator produces fake CRP from Z;

// II. Train the discriminator model D
13: Xreal  samples from real CRP X;
14: Calculate loss(Xreal, 1) and loss(Xfake, 0);
15: Update D to minimize loss(Xreal, 1) + loss(Xfake, 0);

// III. Train the generator model G
16: Calculate loss(Xfake, 1);
17: Update G to minimize loss(Xfake, 1);
18: end for

// IV. Generate fake data and estimate the vulnerability
19: Z ⇠ U(a, b): input noise samples;
20: Xfake  G(Z): generator produces fake CRP from Z;
21: Calculate the vulnerability reflecting the accuracy of Xfake;
22: return vulnerability;
23: end Function

Due to the conflict of interests between the generator and
discriminator sides, the convergence in the minimax game is
often difficult to acheive. To tackle the imbalance between
the two players, our PUFGAN makes one player optimize
more frequently than the other by having k inner iterations,
as suggested in [8].
C. Architecture Restructuring via Vulnerability Diagnosis

The security vulnerability can be considered to be the
probability that a system can be hacked. It is related to how
well our PUFGAN-based agent can discover new, correct
challenge-to-response pairs, which have been neither exposed
nor previously used. We quantify the vulnerability measure
based on PUFGAN’s prediction quality in terms of precision
and recall, as described in Sec. V.

Time t when the security level becomes vulnerable is
determined as follows:

v(t) � ✓risk for t 2 {t1, t2, t3, . . .} (3)

where v(t) is the vulnerability measure at time t, and ✓risk is
the risk level threshold.

Once the vulnerability measure at time t, v(t), exceeds a
certain risk level, ✓risk, we rearrange the underlying PPUF
structure in three different ways:

• Shifting the PPUF operation time t to a different opera-
tion time t0 under the same physical PPUF logic

• Rearranging each logic gate by shuffling only their physi-
cal connections, with the same width and height structure

• Composing totally different logic gates into a structure
with different widths and heights

This architecture restructuring procedure makes the PPUF-
based security architecture resilient against dynamic and po-
tentially malicious environments.

V. EXPERIMENTS

We validated our PUFGAN architecture by implementing
two variants: vanilla GAN, called v-PUFGAN, and conditional
GAN, called c-PUFGAN, in the TensorFlow framework along
with a real-world PPUF architecture and dataset. We ran our
algorithm in three different machine environments: 1) Google
Colab with TensorFlow 1.14.0; 2) desktop PC with Intel
Core i5-7500 CPU, 8GB RAM and Kaby Lake GT2 GPU
with TensorFlow 1.13.1 on 64-bit Windows 10 OS; and 3)
Raspberry Pi 2 Model B with TensorFlow 1.13.1 on Raspbian
OS.

A. Dataset
We obtained a real-world PPUF dataset by generating

challenge-to-response pairs using PPUF simulations from real-
world PPUF FPGA-based fingerprint hardware and its gate
delay measurement [14]. Using gate delay measurement infor-
mation for each of the 57 actual gates in the FGPA, various
PPUF architectures were composed with width w and height
h. To differentiate between PPUF architectures, we identified
specific PPUF types as P c

w⇥h(t), where width is w, height
h, gate inter-connection c, and operation time t. For example,
P c1
11⇥5(700, 000) describes a PPUF architecture consisting of

55 gates with a width of 11 and a height of 5, based on inter-
connection c1 at an operation time of 700,000 time units,
where one time unit is approximately 2.5 ns in the PPUF
FPGA implementation.

The number of CRPs depends solely on the width w of the
PPUF, since the number of challenges is given by 2w. A width
w of 11 and a height h of 5 of the PPUF architecture at an
operation time of 700,000 time units were used, unless oth-
erwise noted. Amongst a total of 2048 challenge-to-response
pairs, we chose half at random as training data and the other
half as testing data at the same operation time case. CRPs
in the testing data were never present in the training data.
Each learning run was affected by the randomness generated
by the weight initialization, the training/testing data split, and
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Fig. 4. Parameter settings in v-PUFGAN with t = 700, 000 time units

optimization, so we ran 10 experiments and calculated the
average performance with the standard deviation, wherever
applicable.

B. Performance Metric
We evaluated the security performance of our PUFGAN

architecture primarily based on vulnerability. Vulnerability was
measured with respect to prediction-wise hacking capability
based on three criteria: Precision(raw), Precision(unique), and
Recall.

Precision(raw) denotes the precision of true positives in
response that is generated for a challenge in the testing
data, which are not any challenge from the training data.
This measure indicates how reliably and consistently a self-
adversarial agent predicts a correct response for unknown
challenge.

Prediction(unique) denotes a sanitized version of Preci-
sion(raw) produced after discarding redundantly generated
CRPs. This measure indicates the precision of true positives
in response per unique challenge from the testing data.

Recall denotes the recall of true positives in response for all
the challenges in the testing data. The metric of (1� Recall)
is the false negative ratio; the ratio of undiscovered challenge-
to-response pairs in the testing data.

C. Vulnerability Performance
The configurations of the generator networks and discrimi-

nator networks used in the experiments were as follows. Both
networks included a single hidden layer with 128 neurons. The
input random noise vector Z comprised 100⇥1 (where l = 1)
uniformly random variables over U [�1, 1]. A ReLU activation
was used at the hidden layer, and an Adam optimizer with a
learning rate of 0.001 was used.

After numerous experiments, we chose a run time of 30,000
iterations, which was sufficient to ensure that the networks
converged. This run time was used for all experiments, unless
otherwise noted. The batch size was varied from 200 to 1000,
and steady-state performance was observed at batch sizes of
600 and beyond, so a batch size of 600 was selected.

1) v-PUFGAN: First, we investigated how security vulner-
ability in terms of precision and recall was affected by the
number of fake CRPs generated in v-PUFGAN, as shown
in Fig. 4(a). As v-PUFGAN generates more fake CRPs, the
number of correct predictions of CRPs increased up to 95% in
terms of Precision(raw). Recall increased slightly, and reached
a steady-state point of 20%, whereas Precision(unique) de-
creased slightly. These results show that generating 10,000
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Fig. 5. Loss of generator and discriminator with respect to the number of
iterations in v-PUFGAN with t = 700, 000 time units, 10,000 generated fake
CRPs, and three inner iterations in the generator
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Fig. 6. Parameter settings in c-PUFGAN with t = 700, 000 time units

fake CRPs may be sufficient to discover unknown CRPs using
v-PUFGAN.

The discriminator tended to perform somewhat better than
the generator, showing the imbalance between two players.
To reduce this performance imbalance, we made the generator
learn more frequently by allowing k inner iterations. Fig. 4(b)
shows that choosing a learning frequency ratio of 3:1 between
the generator and the discriminator (that is, k = 3) resulted in
effective performance, increasing the security vulnerability.

We investigated how cross-entropy loss and security vulner-
ability changed with the number of optimization iterations. As
the number of iterations increased, the loss at both the gener-
ator and the discriminator converged, as shown in Fig. 5(a),
and security vulnerability increased, reaching a high saturation
point with respect to all three metrics near 20,000 iterations, a
value that was chosen on the basis of preceding experiments as
shown in Fig. 5(b). Precision(raw) reached 93.8%, indicating
that v-PUFGAN successfully predicted correct challenge-to-
response pairs. Recall rose above 33.6%, implying that almost
1 out of 3 unknown challenge-to-response pairs was discov-
ered using v-PUFGAN.

2) c-PUFGAN: We examined changes in the vulnerability
of c-PUFGAN depending on parameter settings and opti-
mization iterations. As shown in Fig. 6(a), as the number
of fake responses per challenge increased from 1 to 20, c-
PUFGAN made the system quite stably vulnerable beyond
51%. This phenomenon arises because c-PUFGAN can gener-
ate the response for a specific challenge upon iterating over all
unknown challenges (which are covered in the testing data).
We select two fake response generations per challenge, an
approach which is effective when the resulting vulnerability
reaches around 60%. There was again an imbalance between
the performance of the generator and that of the discriminator,
as shown in Fig. 6(b), and it was found that selecting a learning
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Fig. 7. Loss of generator and discriminator with respect to the number of
iterations in c-PUFGAN, with t = 700, 000 time units, two fake responses
generated per challenge, and three inner iterations in the generator

v-PUFGAN c-PUFGAN
0

10

20

30

40

50

60

70

80

90

100

Se
cu

rit
y 

Vu
ln

er
ab

ilit
y 

(%
)

(a) Precision(raw)

v-PUFGAN c-PUFGAN
0

10

20

30

40

50

60

70

80

90

100

Se
cu

rit
y 

Vu
ln

er
ab

ilit
y 

(%
)

(b) Precision(unique)

v-PUFGAN c-PUFGAN
0

10

20

30

40

50

60

70

80

90

100

Se
cu

rit
y 

Vu
ln

er
ab

ilit
y 

(%
)

(c) Recall
Fig. 8. Security vulnerability with respect to GAN type and prediction metric

frequency ratio of 3:1 between generator and discriminator
(where k = 3) achieved the highest vulnerability, as with v-
PUFGAN.

The number of optimization iterations also had an effect on
the system. Fig. 7 shows that c-PUFGAN successfully made
the system vulnerable with up to 66% in all three metrics,
as two players at c-PUFGAN converged. We found 20,000
iterations to be effective for c-PUFGAN.

3) v-PUFGAN vs. c-PUFGAN: Using the previously de-
scribed parameter settings for v-PUFGAN and c-PUFGAN, we
compared vulnerability performance of the two architectures
in terms of Precision(raw), Precision(unique), and Recall in
Fig. 8. v-PUFGAN shows better performance for correctly
predicting true response positives compared to false response
positives for unknown challenges in the testing data. This
finding indicates that v-PUFGAN is good at finding a set of
frequently appearing CRPs correctly and consistently.

c-PUFGAN shows excellent performance in terms of Recall,
achieving more than 65%. This observation implies that c-
PUFGAN is good at finding unknown CRPs over all possible
unknown challenges within the testing data.

Since the two attack model variants can work together in a
complementary way, a security system should perform more
advanced prevention against machine learning-based attacks
such as these.

4) Effect of PPUF Structure Configuration: We validated
the generality of PUFGAN over various PPUF structures with
different width and height configurations, as shown in Fig. 9.
Both architectures showed a similar trend in drop of vulner-
ability as the complexity of the PPUF structure increased,
with higher width for a similar number of gates in a PPUF
architecture. However, it still achieved high vulnerability.
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Fig. 9. Security vulnerability for v-PUFGAN and c-PUFGAN with regard to
PPUF structure configuration, with t = 700, 000 time units
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Fig. 10. Hamming distance and vulnerability with respect to the neighboring
training data at ±�t

This observation indicates that our PUFGAN-based attacking
models are generally valid for various PPUF structure config-
urations.

D. Effect of Training Data Granularity

We investigated the way in which training data granularity
affected testing performance. We used the training data which
was at intervals ±�t from the test operation time t, where
t = 700, 000 time units.

To investigate how the response space varied as the gran-
ularity, �t, increased, we calculated the average Hamming
distance on response per challenge between the training data
and the testing data. As can be seen in Fig. 10(a), the
average Hamming distance increased with the interval �t.
Therefore, we concluded that security vulnerability decreased
with increasing distance between the training condition and
the testing condition, as shown in Figs. 10(b) and 10(c).

E. Effect of PPUF Restructuring

We examined how PPUF restructuring affected system
vulnerability. We used three approaches: 1) different PPUF
operation times using the same PPUF logic; 2) different gate
inter-connections using the same structure configuration of
the same gates; and 3) different structure configurations with
different widths and heights.
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(c) The effect of operation time t in c-PUFGAN
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(e) The effect of connection type c in v-PUFGAN
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(f) The effect of connection type c in c-PUFGAN
Fig. 11. Effect of PPUF restructuring with respect to the operation time t and the gate inter-connection type c

To examine the effects of different operation times in
the execution (i.e., testing) other than t in the training,
we applied the PUFGAN model learned at t = 700, 000
time units to PPUF operation at operation times from t0 =
100, 000, · · · , 1, 000, 000 time units. To investigate how the
response space varied over different PPUF operation times
for the same challenge space with the same PPUF structure,
we calculated the average Hamming distance on response per
challenge, as shown in Fig. 11(a). As the PPUF operation
time for testing was shifted farther from the original time
for training, the response space became increasingly different.
As shown in Figs. 11(b) and 11(c), the vulnerability of
both v-PUFGAN and c-PUFGAN dropped significantly as the
training data granularity increased. This observation indicates
that when the system makes a PPUF security primitive while
operating in a very different operation environment, its vul-
nerability is significantly reduced.

We also investigated how different inter-connections af-
fected security vulnerability by testing with inter-connections
c0 different from the c1 used at the time of constructing
the PUFGAN models. As shown in Fig. 11(d), the average
Hamming distance on the response space over different inter-
connection other than c1, was significantly different, even more
so than when using different PPUF operation times. Due to
the relatively different CRP patterns, security vulnerability was
very low, reaching almost 0% using both v-PUFGAN and c-
PUFGAN, as shown in Figs. 11(e) and 11(f).

With respect to different structure configurations, since the
PUFGAN model learned using a specific structure cannot
be applied to a structure with different width and height
configurations, due to the difference in model size, we can
also expect that restructuring the PPUF configuration makes
the system totally restored in terms of vulnerability.
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Fig. 12. Execution time in terms of training, fake CRP generation, and
vulnerability calculation using Google Colab, desktop PC, and Raspberry Pi
2

Thus, if a system is allowed to perform a significant physical
change in the security primitive, the system can become more
resilient against various attacks.

F. Computational Feasibility
We investigated the computation feasibility of the system

using different machine environments: Google Colab, a desk-
top PC, and a Raspberry Pi 2 Model B, as shown in Fig. 12.
We measured execution time separately for training, fake CRP
generation, and vulnerability diagnosis. Although it took over
two hours to train both v-PUFGAN and c-PUFGAN on the
Raspberry Pi 2, the performance was adequate. Even assuming
a pessimistic scenario, a computation time of two to three
hours may be acceptable for learning attacking behaviors for
edge devices. For fake CRP generation and vulnerability diag-
nosis, all three machine environments running each PUFGAN
model had computationally feasible performance.

Lastly, we investigated vulnerability dynamics over the
execution time in PUFGAN compared to PUFSec [14],
which does not consider any kind of adversarial attack based
on PPUF security primitive. For both v-PUFGAN and c-
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Fig. 13. Performance dynamics of security vulnerability for w/o vs. w/
restructuring via PUFGAN using a risk level of 50% as an example case

PUFGAN, we enforced PPUF architecture restructuring if
the monitored vulnerability exceeded a risk level of 50%,
sequentially applying three different restructuring methods
with different operation times, different inter-connections, and
different structure configurations. As can be seen in Fig. 13,
our PUFGAN effectively maintained a healthy condition below
the risk level over the execution time. However, the counterpart
work, PUFSec, quickly degraded, showing significantly more
vulnerable security performance.

VI. DISCUSSION

The findings of this research raise several interesting points.
A. v-PUFGAN vs. c-PUFGAN

v-PUFGAN, which is based on vanilla GAN, shows high
prediction quality in terms of raw precision. The large gap
between raw precision and sanitized precision indicates that
a set of correct challenge-response pairs are consistently and
repeatedly generated. This observation implies that attackers
with strong intelligence can obtain significant amounts of
stable and consistent security primitive information.

c-PUFGAN, which is based on conditional GAN, is good
at discovering unknown challenge-to-response pairs. This par-
ticular type of attacking behavior can be used as a way of
quickly disabling the entire security primitive.

Thus, irrespective of the type of adversarial attack, a
fingerprint-based device security system needs to be designed
with these kinds of attack behaviors in mind. It should perform
necessary active operations, such as security restructuring, to
maintain as high a security entropy as possible.

B. Restructuring Security Primitive
When security vulnerability reaches a certain risk level, the

underlying security primitive needs to be restructured. The
restructuring interval is highly dependent on the amount of
revealed challenge-to-response information and the intensity
of adversarial intelligence. Powerful attackers can obtain a
large number of true challenge-to-response pairs. The more
information on the challenge-to-response structure near the
current operation environment is obtained, the earlier a system
becomes vulnerable, even under the same adversarial attack
model.

Attackers can take another approach, increasing the com-
plexity of neural networks in the generator and the discrimina-
tor. A stronger adversarial attack model can achieve a specific
vulnerability level earlier.

Therefore, the restructuring interval needs to be fine-tuned
to prevent computationally more intensive attacks.
C. Implications

Although it is usually very computationally intensive for po-
tential attackers to obtain even one real challenge-to-response
sample in a brute-force manner, we raise the question: if this
kind of event continuously happens in a device fingerprint-
based security primitive PPUF, which is known for strong
security, what happens? A lucky guess or even more intelligent
attacks on the original challenge used as the secret key from
a publicly accessible response can quickly jeopardize a com-
puter system or a group of systems in the network. Our work
provides critical guidelines for designing attack-proof security
systems robust against extreme attacking environments:

• Monitor real-time vulnerability using an internal agent
mimicking various attacks via approaches such as ma-
chine learning, etc.

• Restructure or at least shuffle the underlying security
primitives, either based on system vulnerability or in a
simple periodic manner, changing the operation environ-
ment.

VII. CONCLUSION

We have presented an innovative machine learning-based
attack-proof security methodology and architecture based on
a deep generative model using GANs. We implemented two
GAN variants – vanilla GAN and conditional GAN – in the
PPUF security framework within a self-adversarial agent. The
self-adversarial agent performs internal vulnerability monitor-
ing and feeds back about necessary security restructuring to
the PPUF, maintaining a security entropy as high as possible
over time.

This work provides a basis for the development of a variety
of more advanced machine learning-based attack models,
which can make a security system architecture stronger in
hostile, evolving network environments. Our fundamental ad-
versarial methodology can also be used as an effective way
of attacking more general asymmetric cryptography using the
secret key-to-public key relationship. In future work, it would
be interesting to consider the energy factor, which critically
affects the edge authentication performance.
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