
PUFSec: Device Fingerprint-based Security
Architecture for Internet of Things

So-Yeon Park†, Sunil Lim§, Dahee Jeong†, Jungjin Lee§, Joon-Sung Yang§, and HyungJune Lee†
†Ewha Womans University, South Korea
§Sungkyunkwan University, South Korea

Email: hyungjune.lee@ewha.ac.kr

Abstract—A low-end embedded platform for Internet of Things
(IoT) often suffers from a critical trade-off dilemma between
security enhancement and computation overhead. We propose
PUFSec, a new device fingerprint-based security architecture for
IoT devices. By leveraging intrinsic hardware characteristics, we
aim to design a computationally lightweight security software sys-
tem architecture so that complex cryptography computation can
dramatically be prohibited. We exploit the innovative idea of Pub-
lic Physical Unclonable Functions (PPUFs) that fundamentally
protects attackers from recovering the secret key from public gate
delay information. We implement its hardware logic in a real-
world FPGA board. On top of the PPUF fingerprint hardware,
we present an adaptive security control mechanism consisting
of adaptive key generation and key exchange protocol, which
adjusts security strength depending on system load dynamics.
We demonstrate that our PPUF FPGA implementation embeds
distinctive variability enough to distinguish between two different
PPUFs with high fidelity. We validate our PUFSec architecture by
implementing necessary algorithms and protocols in a real-world
IoT platform, and performing empirical evaluation in terms of
computation and memory usages, proving its practical feasibility.

I. INTRODUCTION

Embedded systems for the Internet of Things (IoT) are
proliferated to broad areas thanks to the recent open-source
hardware technology. Wearable devices such as smart wrist-
band and health kit have widely been used to monitor health,
physical training, and medical status. Although the innovative
devices are expected to create disruptive services, protecting
privacy and security issues on personal information is a key to
the success of Internet of Things where 20 billion IoT devices
are predicted to be connected each other by 2020.

To tackle the essential security problem, there has been
much research effort on devising lightweight yet practically
feasible software-based authentication mechanisms for low-
end hardware platforms. Due to their hardware resource con-
straints of the low-end CPU running at lower clock speeds,
smaller memory and storage sizes, and limited power sup-
ply, computationally less intensive cryptography algorithms
have been proposed in both symmetric-key and asymmetric-
key cryptography in the sensor network research community.
LEAP [13], SPINS [8], and TinySec [3] based on symmetric-
key cryptography that takes less computation cost are proven
to be feasible in small embedded sensor platforms, while re-
sulting in a large communication overhead for key distribution
in return. As for asymmetric-key cryptography, TinyECC [5]

and TinyPBC [7] have been proposed to overcome the expen-
sive asymmetric key computation cost by reducing key size.

Despite their substantial contributions to embedded security
systems, previous works are not free from a critical dilemma
of the performance trade-off issue between security level and
computation overhead in delay and power consumption. This
is due to the fact that those algorithms are designed purely
in the software base, out of consideration with hardware
and software co-optimization under the inherent resource-
constrained environment. Furthermore, the purely software-
based cryptography approach has demonstrated a critical vul-
nerability under hardware cloning. Accordingly, a hardware-
software co-design methodology is a necessary approach to
address the fundamental problem and design an efficient and
reliable embedded security system.

Recently, a new methodology of exploiting characteristic
hardware fingerprints as the uniqueness of a single device for
secure authentication has been introduced in the integrated
circuit (IC) hardware research community, e.g., Physical Un-
clonable Functions (PUFs) [2], [10], [12]. Uncontrollable
process variation during the manufacturing process leads to
sensitive operation discrepancy in a certain situation even for
identically designed IC chips. This innovative approach opens
a whole new opportunity to design a highly resilient security
system, which is clone-proof, ultrafast, and power-efficient,
against side-channel and various physical attacks.

In this paper, we present a novel security system architecture
that exploits a hardware fingerprint approach based on PUF,
suitable for small IoT platforms. By borrowing the innovative
idea of Public Physical Unclonable Functions (PPUFs) en-
abling public-key security, a variation of PUF [1], [4], [6], [9]
from the IC research, we implement a PPUF-based practical
security control mechanism with adaptive key generation in a
real-world IoT platform. To address the inherent computation
overhead issue in embedded security, we dynamically control
security strength by altering the key size to generate, depend-
ing on the current load status of the system.

To the best of our knowledge, this paper is the first to
implement the PPUF security primitive in a real-world sys-
tem based on hardware-software co-optimization and measure
empirical performance in both computation and storage, along
with theoretical security analysis. Our main contributions can
be summarized as:

• We implement the real-world PPUF security hardware

logic in FPGA, employing a simple counter-based delay
measurement scheme.

• We leverage the trade-off relationship between security
level and computation overhead to design a load-aware
key generation scheme compatible with PPUF, which
adapts security strength depending on the available sys-
tem resources.

• We empirically quantify computation running time and
memory footprint for running our PPUF-based system in
a real-world embedded platform.

The remainder of this paper is organized as follows: After
reviewing background on PUF in Sec. II, we describe our high-
level system architecture in Sec. III. We present our PPUF-
based fingerprint hardware in Sec. IV and load-aware key gen-
eration and exchange schemes in Sec. V. After demonstrating
real-world validation of our system architecture in Sec. VI, we
conclude this paper in Sec. VII.

II. BACKGROUND ON PUF

Security keys for cryptography are traditionally embedded
on-chip by fuse or EEPROM. However, they can be hampered
by a number of reverse engineering attacks. To overcome
the vulnerability issue, PUF [2], [12] that exploits random
process variations in manufacturing and provides uniqueness
is proposed. Each manufactured chip can utilize the inherent
hardware fingerprint feature for improving security.

In PUF, instead of relying on secret keys, cryptographic
public keys are extracted from PUF’s element characteristics.
To extract those keys, a certain input (referred as challenge)
is applied to PUF, and its corresponding output (referred
as response) is generated from the PUF. Given the same
challenge, each chip has a unique response originated from
manufacturing variations. Based on this distinctive feature,
we can utilize PUFs for security such as key generation and
authentication [10].

Recently, PPUF [1], [9], [11], which is a variation of PUF,
is introduced such that public-key cryptography is enabled by
using PPUF characteristics as public information. The PPUF
exploits an execution-simulation gap (ESG). PPUF simulation
at an attacker side takes an extremely longer time than PPUF

E

C

A

F

D

B

h
=

 3

w = 2

(a) XOR gate circuit

Gate Input 1
Delay (ps)

Input 2
Delay (ps)

A 7.7 9.5
B 8.3 10.5
C 12.4 8.3
D 10.2 7.4
E 9.2 9.6
F 8.9 7.9

(b) Gate delay table

Fig. 1. PPUF example

PPUF simulation
module

Sender Receiver

PPUF-based
fingerprint h/w module

PPUF-supporting
s/w module

(𝑥0, 𝑦, 𝑡)

Attacker

- Initialize by input 𝑥0
- Select time 𝑡

- input : 𝑥 = (𝑥1,… , 𝑥𝑚)
- output : 𝑦 = (𝑦1,… , 𝑦𝑚)
- = E(𝑑𝑎𝑡𝑎, 𝑥)D

D

- Initialize by input 𝑥0
- Recover 𝑥′ = (𝑥1′, … , 𝑥𝑚′)
- 𝑑𝑎𝑡𝑎 = D(, 𝑥′)D

- Brute-force attack

- Key size adaptation

𝑚Lo
ad

Fig. 2. PUFSec system architecture with PPUF security control algorithm
and protocol based on PPUF fingerprint hardware

execution at the legitimate receiver who physically possesses
its authentic PPUF circuit.

One example of PPUF is cascading XOR gates depicted
in Fig. 1(a). An output of XOR gate changes whenever one
of two inputs toggles. In this way, the number of transitions
exponentially increases as the number of the cascaded XOR
gates h increases. If there are h cascaded XOR gates, 2⇥ 2h

transitions are generated (where the width of input signals
w is 2). With the increased number of transitions, EGS
exponentially increases.

Fig. 1(b) shows an example of gate delay table from the
circuit in Fig. 1(a). Assuming that the initial input of gates A
and B is “10”, the output of gate E and F becomes “00” after
some amount of time (i.e., reaching a steady-state). If the input
changes to “01” at t = 0, the output of gate A changes from
“1” to “0” at t = 7.7, and then to “1” at t = 9.5 according to
the gate delay table. In the same fashion, the output of gate B
makes transitions at t 2 {8.3, 10.5}. The transition continues
over its subsequent row of the circuit. On the second row (the
output of gate C and D), the number of transitions of each gate
output is 4 since each input toggles twice (e.g., the output of
gate C toggles at t 2 {16.6, 18.8, 20.1, 21.9}).

The PPUF-based secret key exchange protocol can be estab-
lished as follows. The gate delay table is public information
in the PPUF-based public-key security. A sender selects x0,
x1, and t to calculate a PPUF output y1; x0 is an input that
makes the PPUF reach a steady-state; x1 is an input arriving
at time 0; y1 is a simulated output using public information
at a selected time t. After obtaining the PPUF output y1,
the sender sends x0, y1, and t to an intended user. In order
to recover the secret key x1, the legitimate user executes
the PPUF logic with all possible input values. Note that the
simulation time exponentially increases as the number of the
transitions doubles at each row. Therefore, only the legitimate
receiver can obtain the result by executing the PPUF within a
much shorter amount of time than the attacker who requires a
tremendous amount of simulation time.

III. SYSTEM ARCHITECTURE

We present PUFSec, a fingerprint-based security architec-
ture for the Internet of Things, as illustrated in Fig. 2. By lever-
aging inherent hardware characteristics as the uniqueness of a

device itself, we aim to design a computationally lightweight
security software system architecture with which an otherwise
software-wise complex cryptography computation can be pro-
hibited as much as possible.

We consider a scenario of the end-to-end authenticated data
delivery between two IoT devices. We let a sender deliver an
encrypted data to a user. We want only the legitimate user to
successfully decrypt the received data, while preventing any
attacker from doing so within a reasonable time limit.

We define three main components in our PUFSec architec-
ture: 1) PPUF-based fingerprint hardware module, 2) PPUF-
supporting software module, and 3) PPUF simulation module.

A. PPUF-based fingerprint hardware module

This module is executed at the user side by running it
to reconstruct its secret key that has been used to encrypt
the received data from a sender. By exploiting unique delay
characteristics as the fingerprint of a given hardware, only the
legitimate user installed with the universally-unique hardware
module can successfully recover the hidden challenge bits
(which are the input of this module) from the given public
response bits (which are the output of this module) within a
limited timeframe.

B. PPUF-supporting software module

This module is located at the user side together with the
PPUF-based fingerprint hardware module. It is physically
connected to the above hardware module via I/O ports. The
software module queries to the hardware module with a chal-
lenge and a specific timing (to measure its output as response)
by writing it to output ports, and receives its response from
the hardware module by reading it from input ports.

The PPUF-supporting software module is launched when it
receives (x0, y, t) information with the encrypted data from the
sender where y = (y1, . . . , ym) and m is the key concatenation
length. In case of the concatenation length m = 1, in order
to find the hidden challenge x0

1, which is the input of the
hardware module that results in y1, it tries to iterate all possible
challenges as input. It sends each input candidate x and the
timing t to the hardware module, leading to the worst case
of comparing with 2w input trials. It should be noted that
gate delay characteristics (e.g., Fig. 1(b)) of each end-user
and (x0, y, t) are public information available anywhere.

C. PPUF simulation module

This module is executed at the sender side to generate a
response given a selected challenge in a software manner given
the public delay characteristics of the designated receiver. Us-
ing the gate delay table, it performs software-wise simulations
of every possible output at each output measurement time.

After choosing a specific challenge x1 (which will be used
as a secret key with the concatenation length of 1) and a
specific time t, it obtains the simulated output result y1 as
the corresponding response. This module encrypts a data to
deliver with the secret key, and sends a designated user the
encrypted data together with (x0, y1, t).

counter

Pulse signal

Target
XOR

XOR_EN

in1

in2

Delay measurement circuit

AND

Dout

Fig. 3. Delay measurement circuit with targeted XOR gate

The software-wise simulation of all possible output at each
different timing can be somewhat computationally intensive.
To tackle the computation overhead that low-end devices
often suffer from, we dynamically control security strength
depending on the current load status of a system by changing
the concatenation length of a secret key to generate. In
this way, we construct a load-aware adaptive key generation
mechanism, making it practically feasible in real-world low-
end IoT devices.

IV. PPUF-BASED FINGERPRINT HARDWARE

This section describes PPUF hardware architecture and
implementation details for resource-constrained IoT devices.

A. Counter-based delay measurement circuit (DMC)
In PPUF, the gate delay measurement is essential and im-

portant to set up public data for public-key security. Measuring
gate delays is a cumbersome process that requires a complex
circuit and an expensive equipment. To construct a PPUF hard-
ware on resource-constrained IoT devices, a lightweight delay
measurement method is required. This subsection presents a
simple counter-based gate delay measuring implementation.
The counter can be considered as an on-chip delay-meter.
Fig. 3 depicts the proposed DMC (delay measurement circuit)
that consists of a counter, AND gate, and XOR gate.

To measure a delay, we initialize the DMC by setting in1
= 0 and in2 = 0. Then, in1 = 1 is applied to measure an in1
propagation delay of the targeted XOR gate. However, for a
short amount of time, the targeted XOR output does not change
to 1 even after in1 = 1 owing to the propagation delay. This
makes the output of XOR EN 1, and the counter increases
since the pulse signal such as system clock reaches to the
counter. The counter is only incremented until the targeted
XOR output becomes 1 after the propagation delay. This sets
the output of XOR EN to 0, and consequently, the counter
stops increasing. As a result, we obtain the targeted XOR gate
delay by observing the counter value through Dout.

B. Hardware architecture
The PPUF architecture needs to support not only PPUF

operation, but also delay measurement for public data con-
struction. To serve the two operations, we propose a PPUF

DMC
ctrl Dout

DMC
ctrl

DMC
ctrl

DMC
ctrlDout Dout

Dout

(a) Delay measurement mode

h

w

in1 in2 in3 inW

out1 out2 out3 outW

is connected in each row

(b) PPUF operation mode

Fig. 4. PPUF hardware architecture

hardware architecture given in Fig. 4. It has two modes: delay
measurement mode and PPUF operation mode.

1) Delay measurement mode: Fig. 4(a) shows a configura-
tion of delay measurement mode. In this mode, each delay of
XOR gates in PPUF is measured. As addressed in Sec. IV-A,
each DMC is controlled to measure the delay of XOR gate.

2) PPUF operation mode: Fig. 4(b) illustrates a configu-
ration of PPUF operation mode. It builds a canonical form of
PPUF [1] whose size is h(height) ⇥ w(width). There are w-bit
input and w-bit output. To recover the secret key, the hardware
receives the data (x0, y1, t) from the software module and
starts iteration. After it finds the matched x0

1 that makes the
output y1 at time t, it sends x0

1 back to our PPUF-supporting
software module.

V. ADAPTIVE SECURITY CONTROL

In this section, we present our key exchange procedure
and adaptive key generation scheme in the proposed PUFSec
architecture. Two parties of a sender and a receiver aim to
establish a secure connection without exposing significant
security credentials in the middle of communication.

A sender executes the PPUF simulation module (presented
in Sec. III-C) that generates a secret key (as challenge) based
on the unique delay characteristics of the receiver to which it
wants to send data. It sends only its response with which the
original secret key can be recovered not by any unintended
receiver including attackers, but by only the intended receiver
running its own PPUF system (presented in Secs. III-A and
III-B). We present the procedure of how key-related credentials
are exchanged in the architecture in Sec. V-A.

To effectively use available resources usually limited in IoT
devices, it is important to perform adaptive resource allocation
over time depending on resource usage dynamics. When the
given resource becomes scarce due to the main job processing,
the device may decrease the security level only during some
interval and increase back when the resource is available.
We apply the idea of adaptive security control to the PPUF
architecture through dynamic key concatenation in Sec. V-B.

The resource itself drastically affects PPUF performance in
terms of computation and memory usage. Given the limited
computation and memory resources, the design parameters

of the height and the width of PPUF, and the concatenation
length are intertwined, and should accordingly be determined
to protect from attackers. We perform theoretical security
analyses on computation complexity and memory usage with
respect to those design parameters in PPUF in Sec. V-C.

A. Key Exchange Procedure
We consider two parties of a sender and a receiver to

exchange public key information (i.e., PPUF response) and
encrypted data using the original secret key (i.e., PPUF
challenge). The sender executes the PPUF simulation mod-
ule, while the receiver runs its own PPUF-based fingerprint
hardware module to recover the original secret key from the
received public key information.

We implement a key exchange protocol similar to [1]. To
let the sender control its suitable encryption security strength,
we use a key concatenation method to change the secret key
size. We denote the concatenation length as m.

In the sender side, PPUF simulation module is run to
simulate a pair of (challenge, response) based on the public
delay information of the intended receiver. It first selects a
specific time t at which the output will be measured for the
input fed at t = 0. Then, it randomly selects a steady-state
input x0 among all possible input cases and makes the PPUF
simulation module reach a steady-state. After this, it randomly
selects the first challenge x1 from [0, 2w), except for x0, and
runs the PPUF simulation to get its resulting response y1.
Using the concatenation length of m, the module continues
this procedure until we obtain a whole response set (y1, y2,
. . . , y

m

) for the challenge set (x1, x2, . . . , x
m

). We use the
challenge set (x1, x2, . . . , x

m

) as a secret key and encrypt
data with it. The sender delivers the encrypted data with only
the symptom (x0, y1, y2, . . . , y

m

, t) to its intended receiver,
while suppressing the original challenge set.

When the intended receiver receives those information from
the sender, it first initializes its PPUF fingerprint hardware by
feeding the received steady-state input x0. We construct a set
of (challenge, response) pairs by iterating over all possible
input cases and measuring each corresponding response mea-
sured at t via the PPUF fingerprint hardware. Once the whole
pair table is obtained, we start finding x0

1 that matches the
received y1. We continue to do so until fully recovering its
original challenge set (x0

1, x0
2, . . . , x0

m

), which is the original
secret key used for the encryption at the sender. Finally,
the receiver decrypts the received encrypted data with the
recovered secret key.

B. Load-Aware Adaptive Key Generation
We suppose that there exists the maximum permitted energy

budget E
max

to use during a certain interval in an individual
IoT device. A device has tasks to perform, and its system load
status fluctuates over time. In low-end embedded platforms,
keeping a fixed strong security level all the time irrespective
of system’s load status may severely interrupt some concurrent
task execution other than the security operation. A desirable
approach is that if the system is currently heavy-loaded,

Algorithm 1 Adaptive PPUF Key Simulation at Sender
1: Input: Gate-level delays of receiver
2: Output: Encrypted data & Yvalue
3: Monitor the current system load;
4: Calculate the available computational energy budget;
5: KeyLength = select-key-length(availablePower);

// Make the PPUF reach a steady-state by feeding initialValue
6: Randomly choose initialValue among [0, 2width);
7: Invoke ppuf-simulate(initialValue);
8: Select a selectedTime;
9: SecretKey = 0, Yvalue = 0;

10: while (length(SecretKey) < KeyLength)
11: Randomly choose Xvalue among [0, 2width);
12: SecretKey = (SecretKey ⌧ width) | Xvalue;
13: Response = ppuf-simulate(Xvalue, selectedTime);
14: Yvalue = (Yvalue ⌧ width) | Response;
15: endwhile
16: Encrypt data with SecretKey;
17: Send the Encrypted data with (initialValue, Yvalue, selectedTime);

Algorithm 2 Recover PPUF Key Using Fingerprint H/W at
Receiver
1: Input: Encrypted data & (initialValue, Yvalue, selectedTime)
2: Output: Decrypted data
3: if (have enough resource to decrypt the data)

// Make the PPUF reach a steady-state by feeding initialValue
4: Invoke ppuf-execute(initialValue);
5: for (Challenge = 0 to 2width

� 1)
6: Response = ppuf-execute(Challenge, selectedTime);
7: Store (Challenge, Response) pair;
8: endfor
9: SecretKey0 = 0;

10: while (length(SecretKey0) < KeyLength)
11: Response = low-width-bits(Yvalue � (width⇥(concatLength �1)));

// Find Challenge by looking up (Challenge, Response) pairs
12: Challenge = find-by-lookup(Response);
13: SecretKey0 = (SecretKey0 ⌧ width) | Challenge;
14: concatLength = concatLength �1;
15: endwhile
16: Decrypt the data with SecretKey0;
17: else
18: delay the decryption process;
19: end if

it autonomously decreases its security level, reducing the
required computation overhead for security. After completing
a large portion of tasks, the system may invest some more
resources for security by increasing the security level in an
adaptive manner.

We design an adaptive key generation mechanism based
on an understanding of the trade-off between computation
overhead and security level. We monitor the current energy
consumption E

load

during an interval made by main tasks.
We can calculate the remaining available energy budget that
can be invested for security, i.e., E

rem

= E
max

�E
load

. Our
goal is to fully allocate the remaining energy budget E

rem

for
increasing its security level as strong as possible.

To achieve this goal, we first construct an empirical model
of energy consumption for PPUF key generation and encryp-
tion (at the sender side) with respect to key size. We run
the PPUF simulation module (as described in Sec. III-C) in
Raspberry Pi 2 Model B (which is our system environment

Key Size (Byte) Key Simul. (J) Encryption (J) Total (J)
16 3.184 0.183 3.368
32 5.955 0.256 6.210
48 8.963 0.325 9.287
64 11.751 0.390 12.140
80 14.704 0.468 15.172
96 17.346 0.528 17.874

112 20.702 0.603 21.305
128 23.213 0.685 23.898
144 26.138 0.753 26.891

TABLE I
EMPIRICAL ENERGY CONSUMPTION MEASUREMENTS FOR RUNNING

PPUF KEY SIMULATION AND MODIFIED AES ENCRYPTION

of implementation and evaluation in Sec. VI) to measure the
incurred energy consumption. After the key generation, the
sender side should perform an encryption process before send-
ing data. For encryption and decryption, we use a modified
AES algorithm that has been ported from AES in TinyOS
and has been extended with various key size. In case of
the data size of 20 Kbytes, we measure the incurred energy
consumption for running the encryption with respect to key
size and record them in a lookup table as in Table I. We
use the lookup tables (with respect to various data size) to
determine the key size to generate within the available energy
budget.

Once the available energy budget E
rem

is given, we find the
maximum key size k

max

that can fit into E
rem

by referring to
the lookup table. Then, we calculate the concatenation length
m = bk

max

/wc.
To the end, we choose a key size as strong as possible to

maintain in a certain interval and continue to refresh the key
size in a subsequent interval, while reflecting real-time load
dynamics in IoT devices.

C. Security Analysis

We perform the theoretical analyses of security performance
in a PPUF system. Since IoT devices face the fundamental
constraints of relatively low-end computation power and small
storage, it is important to analyze the qualitative system perfor-
mance of a PPUF system under various system configurations.
Depending on the amount of resource and a given reliability
requirement, feasible hardware and software design parameters
(e.g., the height and the width of PPUF) should be determined.

We first define the transition delay, which specifies the
incurred latency from challenge to response at PPUF. The
overall PPUF delay characteristic results from a composite
of gate delay characteristics over the selected path.

Definition 1 (Transition Delay) The transition delay T
h

from stage 1 up to h in PPUF is defined as
P

h

i=1 ⌧i where ⌧
i

is the gate delay from a selected input to its resulting output
at stage i.

We define the collision, which is is the result of two signal
paths indistinguishable due to the inherent hardware require-

ment from the measurable time resolution. We categorize it
into two types: intra-collision and inter-collision.

Definition 2 (Intra-Collision) Given that there exists the
minimum detectable glitch duration � required by hardware,
PPUF has an “intra-transition” ambiguity between inputs
1 and 2 within a gate, called “intra-collision” in case of
|⌧ (1)

i

� ⌧
(2)
i

| < �.

Definition 3 (Inter-Collision) Given that there exists the
minimum detectable glitch duration � required by hardware,
PPUF has an “inter-transition” ambiguity between two dif-
ferent paths up to stage h, called “inter-collision” in case of
|T

h

� T 0
h

| < �, excluding any intra-collision case in parts.

Theorem 1 (Identification Failure Due to Intra-Collision)
PPUF has the identification failure probability due to at
least one intra-collision that increases as h, w, or � does,
respectively.

Proof: The probability of no intra-collision over h ⇥ w

PPUF gate configuration is given by [P (|⌧ (1)
i

�⌧
(2)
i

| � �)]h·w.
The signal paths from each input to output are uniquely charac-
terized due to the manufacturing variability. Accordingly, ⌧ (1)

i

and ⌧
(2)
i

can be considered as independent random variables of
the gate delay. Given the probability density function g(⌧) of
the gate delay ⌧ , the probability can be computed as follows:

P (|⌧ (1)
i

� ⌧
(2)
i

| � �) = 2 ·
Z 1

0

Z 1

x2+�

g(x1)g(x2)dx1dx2

= 2 ·
Z 1

0
Ḡ(x2 + �)g(x2)dx2

where the probability is a non-increasing function of �.
Consequently, there exists an identification failure due to the

intra-collision with the probability of 1 � [P (|⌧ (1)
i

� ⌧
(2)
i

| �
�)]h·w, increasing as h, w, or � does, respectively.

Theorem 2 (Identification Failure Due to Inter-Collision)
PPUF has the identification failure probability due to an
inter-collision, dependent upon h and �.

Proof: The probability with no inter-collision over h⇥w
PPUF gate configuration is given by P (|T

h

� T 0
h

| � �). As
aforementioned, ⌧1, ⌧2, . . . can be assumed to be independent
and identically distributed with mean µ and variance �2.
Applying the central limit theorem, T

h

(=
P

h

i=1 ⌧i) can be
approximately normally distributed with mean hµ and variance
h�2, i.e., T

h

⇠ N(hµ, h�2). Denoting l(t) as the probability
density function of the transition delay t, the probability of no
intra-collision can be calculated as follows:

P (|T
h

� T 0
h

| � �) = 2 ·
Z 1

0

Z 1

t2+�

l(t1)l(t2)dt1dt2

= 2 ·
Z 1

0
L̄(t2 + �)l(t2)dt2

where l(T
h

) is reduced to be the probability density function
of a normal distribution with N(hµ, h�2).

Accordingly, there exists an identification failure due to an
inter-collision with the probability of 1 � P (|T

h

� T 0
h

| � �),
dependent upon h and �.

Theorem 3 (Identification Reliability) PPUF has the iden-
tification reliability that decreases as h, w, or � increases,
respectively.

Proof: The probability of the successful identification
free from both intra-collision and inter-collision is given by
[P (|⌧ (1)

i

�⌧
(2)
i

| � �)]h·w+P (|T
h

�T 0
h

| � �). As the first term
is the dominant factor with respect to h, it is straightforward to
conclude that the probability decreases as h, w, or � increases,
respectively.

We now measure the qualitative complexity of computation
and storage by varying design parameters of a PPUF system.

Theorem 4 (Computation Complexity) Computation com-
plexity with the height of h, the width of w, and the con-
catenation length of m in PPUF is given by O(w · 2h ·m) at
the sender side that simulates keys, O(2w) at the legitimate
receiver side, and O(w · 2w · 2h) at the attacker side.

Proof: The sender side needs to compute the transition
time for each gate at each stage by iterating over the total w·2h
number of transitions up to stage h (as also noted in [1]). We
repeat this procedure with m times for its subsequent con-
catenations, thereby taking the total computation complexity
of O(w · 2h ·m). The legitimate receiver side seeks an input
that matches the given output by iterating over all possible
input cases, i.e., 2w cases. It continues with m concatenations
by just referring to the iterated input-output pairs, leading to
the computation complexity of O(2w). The attacker side, on
the other hand, should iterate over all possible input cases as
well as all possible transition cases up to stage h. For the
subsequent concatenations, it can just refer to the generated
input-output pairs, resulting in the computation complexity of
O(2w · w · 2h).

This theorem implies that increasing the height of PPUF is
a very effective way of forcing an exponentially increasing
computation burden to attackers. In return, however, there
exists a side effect on the sender side with the exponentially
increasing computation time for simulation, making practical
operations infeasible particularly for IoT devices.

It should be noted that although increasing the concatena-
tion m strengthens a cryptography algorithm’s security for
encryption and decryption, it may cause some computation
burden for simulating a key at the sender side. This is due to
the fact that the computation complexity of the other parties
(i.e., the user side and the attacker side) is irrespective of
the concatenation length m. Therefore, there should exist a
maximum allowable value m

max

such that the computation
complexity of the attacker side is significantly larger than that
of the sender with the concatenation length of [1, m

max

].

Theorem 5 (Storage Complexity) Storage complexity with
the height of h, the width of w, and the concatenation length
of m in PPUF is given by O(w · 2h) at the sender side that
simulates keys, O(2w) at the legitimate receiver side, and
O(2w + w · 2h) at the attacker side.

Proof: The sender side needs to store all possible transi-
tion times with the memory complexity of O(w · 2h). The
legitimate receiver side should record each input and its
corresponding output until it finds the matched input for the
given output, requiring the memory complexity of O(2w). On
the other hand, the attacker side needs to store all the input-
output pairs, and also all possible transition times, leading
to the memory complexity of O(2w + w · 2h). Note that the
concatenation procedure does not require any further memory
space at all parties since the already-assigned memory space
is reusable for the next concatenation.

Taking a holistic consideration in designing a practically
feasible PPUF system, there is an inevitable trade-off between
identification reliability, and computation and storage overhead
for increasing the height and the width of the PPUF system.

VI. EVALUATION

We validate our device fingerprint-based security architec-
ture PUFSec by implementing a PPUF hardware logic and
a PPUF-compatible software module in real-world platforms.
We implemented our PPUF fingerprint hardware consisting of
a simple counter-based delay measurement logic and an XOR
array network of up to 7 ⇥ 24 (where h = 7 and w = 24)
for the PPUF operation, in Xilinx Zynq-7000 FPGAs. We
implemented our PPUF-based software system in Raspberry
Pi 2 Model B with Raspbian operating system based on Linux
Debian.

A. PPUF Hardware Performance
First, we evaluate our PPUF fingerprint hardware perfor-

mance with respect to a gate delay distribution and board
uniqueness. We measured delays for 336 gates at a normal
operating temperature from an FPGA board. As in Fig. 5(a),
the delay counter value is ranged with the mean value of 813.9
and the standard deviation of 6.7, where one counter granu-
larity is approximately 2.5 ns. One interesting observation is
that the gate delay distribution of the PPUF implementation
is a high goodness-of-fit with a normal distribution based on
both Kolmogorov-Smirnov test and �2 test with the p-values
of 0.89 and 0.69, respectively under a significance level of
5%.

More importantly, we quantify the inherent uniqueness of
each different PPUF FPGA implementation. We use the board-
to-board Hamming distance (HD) as a uniqueness measure,
showing what percentage of response bits are different from
each other between two FPGA boards for a given identical
challenge (x0, x1, t). We repeat this procedure with 1,000
different challenge sets. Fig. 5(b) shows the distribution of
board-to-board HD measurements at a normal operating tem-
perature. The mean value of the normalized HD is 0.425,

795 800 805 810 815 820 825 830 835
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Counter Delay

D
en

si
ty

(a) Gate delay measurements from
our PPUF FPGA implementation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Normalized HD

D
en

si
ty

(b) Board-to-board Hamming dis-
tance as a uniqueness measure be-
tween two different PPUF FPGA im-
plementations

Fig. 5. PPUF FPGA performance with respect to gate delay and uniqueness

which is close to the ideal value 0.5. This implies that our
PPUF FPGA implementation embeds distinctive variability
enough to distinguish between two different PPUF hardware
security modules.

B. PPUF System Performance
We evaluate the authentication execution performance of

PUFSec under various system configurations in the Raspberry
Pi 2 platform. We measure the execution time for key gener-
ation at the simulation module of a sender, and the execution
time for key recovery at a legitimate receiver, and an attacker.
The attacker attempts to retrieve its original secret key based
on a brute-force attack at a third party by simulating the PPUF
logic over all possible challenge inputs to find the exactly
matched response output. We vary the design parameters of
w, h, and m. Since the sender and the attacker side have
been implemented purely based on software, their execution
time is determined by their simulation runtime. The receiver
side consists of the PPUF-supporting software module and
the PPUF-based fingerprint hardware module. To quantify the
total execution time at the receiver, we measure the software
execution time and the FPGA access time through I/O ports.
The FPGA access time is calculated as the sum of two parts:
the GPIO access time to write for x0, x1, x2, . . ., x

m

, t
and read for y1, y2, . . ., y

m

toward Raspberry Pi 2, and
the maximum PPUF gate logic runtime inside the FPGA
board (obtained from the worst case logic latency from FPGA
measurements).

To validate the storage complexity, which is of a great prac-
tical interest to resource-constrained embedded IoT systems,
we quantify the memory footprint for running a PPUF system
at each party of a sender, a receiver, or an attacker, respectively.

In our experiments, the parameters of w = 8, h = 7, and
m = 16 in the PPUF hardware and software are used, unless
otherwise noted.

We investigate computation complexity in terms of execu-
tion time as in Fig. 6. As the width w of PPUF increases
in Fig. 6(a), the attacker has an exponentially increasing
execution time. In a Raspberry Pi 2 board, the attacker has
indeed failed to finish its simulation module to recover the
secret key in a brute-force manner beyond w = 10. On the
other hand, the intended receiver in possession of its own

0

50

100

150

200

250

300

350

2 4 6 8 10 12

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

w

Sender

Attacker

Receiver

(a) Execution time with respect to w (h = 7, m = 16)

0

5

10

15

20

25

30

35

40

45

1 3 5 7

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

h

Sender

Attacker

Receiver

(b) Execution time with respect to h (w = 8, m = 16)

0

5

10

15

20

25

30

35

40

45

50

32 64 96 128 160 192 224 256 288

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

m

Sender

Attacker

Receiver

(c) Execution time with respect to m (w = 8, h = 7)

Fig. 6. Authentication execution performance comparison at each party of
sender, intended receiver, and attacker

PPUF fingerprint hardware and software is very fast to recover
the secret key, while the sender spends only slightly more
time than the receiver. The time gap results from whether
the key generation is made by fingerprint hardware or pure
software. Regarding the effect of the height h, the measured
execution time shows a similar trend with varying w as shown
in Fig. 6(b).

Given our current PPUF implementation scale up to 7⇥ 24
array network (where h = 7 and w = 24), it turns out that
increasing w is a very effective way to protect against a brute-
force attack, severely penalizing its simulation execution time.

Next, we explore the effect of the concatenation length m
in Fig. 6(c). To show how the computation complexity is
affected by m for all of the parties, we have intentionally
run experiments in a small PPUF scale with w = 8. The
receiver and the attacker have run their execution irrespective
of the concatenation length m, whereas the execution time
at the sender increases in a linear fashion (as also analyzed
in Theorem 4). It is shown that there can exist a maximum
allowable value of m where the execution time of the sender is

0

20

40

60

80

100

120

2 4 6 8 10

M
em

o
ry

 U
sa

g
e

(K
b
yt

e)

w

Sender

Attacker

Receiver

(a) Memory usage with respect to w (h = 7, m = 16)

0

10

20

30

40

50

60

70

80

90

100

1 3 5 7

M
em

o
ry

 U
sa

g
e

(K
b
yt

e)

h

Sender

Attacker

Receiver

(b) Memory usage with respect to h (w = 8, m = 16)

Fig. 7. Memory footprint measurement at each party of sender, intended
receiver, and attacker

even larger than that of the attacker. This means that increasing
the concatenation length for improving the encryption security
may harm its precedent key generation at the sender, leading
to high computation burden at some point in return. Thus,
it is important to choose the proper design parameters of w,
h, and m to implement a PPUF system with high efficiency
and security by taking into account their relative performance
relationship.

We have observed that the empirical results are consistent
with the theoretical analysis of Theorem 4. It should be also
noted that the execution time at the receiver in possession of
PPUF hardware and software can further be reduced if the
PPUF hardware logic is implemented in application specific
integrated circuit (ASIC).

We also examine how our PPUF system consumes memory
resource by varying the design parameters of w and h in
Fig. 7. As the width w increases, both the sender and the
attacker require linearly increasing memory resource, whereas
the receiver uses relatively very small memory space as shown
in Fig. 7(a). As the height h increases, on the other hand, both
the sender and the attacker consume exponentially increasing
memory space, whereas the memory usage at the receiver is
almost constant, irrespective of h. This means that both the
sender and the attacker need a large amount of memory space
for maintaining all possible transitions, whereas the receiver
can record only each input and its corresponding output by
running the PPUF hardware module. Note that these empirical
results are also consistent with the theoretical analysis of
Theorem 5.

We discuss two ways to make brute-force attacks practically
infeasible from the perspectives of storage complexity and

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

En
er

g
y

C
o
ns

um
p
ti
o
n

(J
)

System Load Sequence

Main Task PPUF Key Simulation Encryption

Fig. 8. Adaptive security level control performance under system load
dynamics

computation complexity. If we want to disable the brute-force
attack by forcing the attacker to consume too much memory,
we need to increase either the height h or the width w of
PPUF. However, this approach also degrades the performance
at the sender side, damaging the entire application scenario
itself. From the perspective of computation complexity, on the
other hand, choosing either large w or h can be a way to make
an attacker to run its simulation with a tremendous amount of
time. Thus, we have to choose a certain range of w and h
values that can make the attacker enough to run forever, while
not causing too much memory resources penalty to the sender.

We also discuss which parameter between w and h is
a more critical one to severely affect the PPUF security.
Although increasing both parameters results in exponentially
increasing computation time at the attacker, the memory usage
exponentially increases with h, but only linearly increases
with w at the attacker and also the sender. This indicates that
increasing the width w of PPUF is a more practical approach
to improve both security and feasibility.

Lastly, we validate our load-aware security control mecha-
nism under various load dynamics. To simulate our adaptive
security control feature, we execute a different virtual main
task with a periodic manner in Raspbian Linux, while consum-
ing processing energy, as shown under ‘Main Task’ in Fig. 8.
Under a system operation requirement that Raspberry Pi 2
should last for one month without battery replacement using
its initial battery amount of 6000 mAh, we let our system be
limited by a maximum energy budget of 25 J within every 10
minute window. By monitoring the current processing energy
consumption for the main task, our security control mechanism
successfully finds the strongest security level, but within its
remaining energy resource, as system load fluctuates over time.
This demonstrates that our adaptive security control based
on PPUF contributes to reaching a great balance between
computation and security in real-world IoT platforms.

VII. CONCLUSION

We have presented a PPUF-based security system architec-
ture for a real-world Internet of Things based on unclonable
hardware characteristics. We design a load-aware adaptive key
generation mechanism compatible with PPUF, which is imple-
mented in FPGA by leveraging a simple counter-based delay
measurement scheme. It dynamically adjusts security level for
authenticated data delivery between two parties by changing

the secret key size to reflect the available computation power
of a sender side. Therefore, our cryptography system enhances
the security strength with allowable computation overhead in
IoT devices.

Our experiments based on PPUF-implemented hardware
and software indicate that our system architecture inherently
becomes more invulnerable to attacks from a third party as
increasing the width or the height of PPUF. In addition, we
discover a crucial observation that there exists a maximum
allowable key size since a larger key size beyond it puts
significant computation burden, disabling the PPUF key simu-
lation in the sender side, through both theoretical analysis and
empirical measurements.

For future work, we would conduct extensive experiments
to investigate the effect of environment factors such as tem-
perature and interference. Also, we may implement a closed-
loop PUFSec prototype by more tightly coupling the PPUF-
based fingerprint hardware module with the PPUF-supporting
software module. It would also be interesting to design a
lightweight communication algorithm for security negotiation
to determine proper key size and key renewal time optimized
by system load at both ends.

ACKNOWLEDGMENT

This work was supported by Basic Science
Research Program through the National Research
Foundation of Korea(NRF) funded by the Ministry of
Education (NRF-2015R1D1A1A01057902 and NRF-
2015R1D1A1A01058856).

REFERENCES

[1] N. Beckmann and M. Potkonjak. Hardware-based public-key cryptog-
raphy with public physically unclonable functions. In International
Workshop on Information Hiding, pages 206–220. Springer, 2009.

[2] B. Gassend, D. Clarke, M. Van Dijk, and S. Devadas. Silicon physical
random functions. In ACM CCS, 2002.

[3] C. Karlof, N. Sastry, and D. Wagner. TinySec: a link layer security
architecture for wireless sensor networks. In ACM SenSys, 2004.

[4] M. Li, J. Miao, K. Zhong, and D. Z. Pan. Practical public PUF enabled
by solving max-flow problem on chip. In ACM DAC, 2016.

[5] A. Liu and P. Ning. TinyECC: A configurable library for elliptic curve
cryptography in wireless sensor networks. In ACM/IEEE IPSN, 2008.

[6] M. Majzoobi and F. Koushanfar. Time-bounded authentication of fpgas.
IEEE Transactions on Information Forensics and Security, 6(3):1123–
1135, 2011.

[7] L. B. Oliveira, D. F. Aranha, C. P. Gouvêa, M. Scott, D. F. Câmara,
J. López, and R. Dahab. TinyPBC: Pairings for authenticated identity-
based non-interactive key distribution in sensor networks. Computer
Communications, 34(3):485–493, 2011.

[8] A. Perrig, R. Szewczyk, J. D. Tygar, V. Wen, and D. E. Culler. SPINS:
Security protocols for sensor networks. Wireless networks, 8(5):521–
534, 2002.

[9] M. Potkonjak and V. Goudar. Public physical unclonable functions.
Proceedings of the IEEE, 102(8):1142–1156, 2014.

[10] M. Rostami, J. B. Wendt, M. Potkonjak, and F. Koushanfar. Quo
vadis, PUF?: trends and challenges of emerging physical-disorder based
security. In Proceedings of DATE conference, 2014.

[11] U. Rührmair. Simpl systems: On a public key variant of physical
unclonable functions. IACR Cryptology ePrint Archive, 2009:255, 2009.

[12] G. E. Suh and S. Devadas. Physical unclonable functions for device
authentication and secret key generation. In Proceedings of the 44th
annual Design Automation Conference, pages 9–14. ACM, 2007.

[13] S. Zhu, S. Setia, and S. Jajodia. LEAP+: Efficient security mechanisms
for large-scale distributed sensor networks. ACM Transactions on Sensor
Networks (TOSN), 2(4):500–528, 2006.

