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Abstract—In this paper, we consider the problem of distribut-

ing patrol officers inside a building to maximize the probability

of catching multiple intruders while minimizing the distance the

patrol officers travel to reach the locations of the intruders.

In our problem setting, the patrol officers are assisted by the

information collected by a network of binary proximity sensors

installed in the building. We claim that learning even common

movement sub-patterns that originate due to the constrained

physical environment helps to find likely locations of intruders

where each major location is instrumented using a sensor node.

We use a series of binary detection events to infer likely future

trajectories in a real-world building. For a given set of detectable

nodes on the inferred future trajectories, we aim to find the

optimal patrol dispatch node location with high exposure to

intruders’ future appearance using patrol officers in limited

numbers, ideally fewer than the intruders. In order to prevent

possible crime and perform responsive defense against potential

intruders, our algorithm also tries to reduce the travel distance

from patrols current positions to their dispatched positions at the

same time. We validate our proposed scheme in terms of detection

accuracy by varying the number of intruders, robustness against

missing events, and responsiveness compared to a practical

baseline counterpart through real-world system experiments.

I. INTRODUCTION

Building automation is a promising area of work that
focuses on monitoring and controlling lighting and HVAC
(Heating, Ventilating, and Air Conditioning) systems to dras-
tically save total energy consumption by up to 60 – 70 % in
typical buildings. Beyond the energy saving effort, devising
an intelligent surveillance system with minimal human inter-
vention is a crucial discipline to further explore in the era of
Internet-of-Things (IoT).

In office buildings, there are usually only a limited number
of security patrols. These patrols perform security checks in a
regular manner at designated times or on a random intervals
over somewhat regular paths. A smart intruder may take one of
several minimum exposure paths [1] where one is unlikely to
get caught. To protect building assets and casualties in build-
ings from intruders, a camera vision-based surveillance system
[11] has been proposed. However, the camera vision-based
surveillance faces the fundamental limitation of reactiveness.
If patrols are dispatched to the place where the intruder was

detected in the video, the intruder may already be somewhere
else by the time the patrol reaches that place.

To address this problem in intruder detection and coverage
in a more cost-effective manner, binary proximity sensor-based
approaches have widely been proposed in [2], [9], [16], [23],
[24], [27]. The prior works find monitoring areas with high
exposure of intruders and obtain the movement scheduling
strategies of patrols to efficiently traverse region of interests
for detecting intruders. However, most of these prior work are
theoretical and suffer from a practical limitation in directly
applying to a real-world embedded system due to their strong
assumptions of detection and mobility models.

Intruders’ movement behavior usually includes deviant
walking patterns (e.g., wandering-around, standing while being
hidden), and it is believed that intrusion detection and predic-
tion is a challenging and even infeasible problem. However, a
previous study [25] provides a strong evidence that intrusion
learning is feasible for passive intrusion detection. Its pattern
profiling helps to increase intrusion detection probability. Our
work also takes a similar methodology of intrusion learning.

In this paper, we present a patrol dispatch surveillance
system based on a network of binary proximity sensors in a
real-world testbed. We exploit the inferred knowledge of future
movement of intruders to dispatch patrols to security spots that
have high exposure to as many intruders as possible. We aim
to maximize the detection probability while minimizing the
travel distance of patrols to intruders.

We first construct a database of all possible classic tra-
jectory patterns covering travel paths in the network based
on binary detection events from normal non-intruders in the
off-line learning phase. In the execution phase, if an intruder
is detected over a series of binary proximity sensors along
his somewhat deviating travel path, our system puts together
several best pattern matching clusters that include partial
but similar travel patterns in their subsets through dynamic
programming. Based on this information, we obtain all likely
detectable nodes which the intruder would travel in the near
future with high probability.

Once we infer the likely detectable nodes with their de-
tectable probabilities, we aim to find the best reachable node



regions through a stochastic optimization. We formulate the
problem of patrol dispatch into a binary integer program that
attempts to maximize the coverage of patrols to find intruders,
while reducing travel distance.

We evaluate our proposed surveillance system in terms of
detection accuracy and responsiveness in a real-world testbed
compared to a baseline algorithm. Our work can effectively
detect intruders with few patrols, and the detection accuracy
does not decrease with increasing number of intruders. More
importantly, even under severe detection failures on binary
proximity sensors, our system demonstrates its robustness,
satisfying an important practical aspect.

It should be noted that our work is not the one that claims to
predict the future deviant patterns of intruders one-on-one, but
the one that locates some highly detectable areas that appear
more commonly over the inferred future trajectories.

To the best of our knowledge, this paper is the first to
implement a practical patrol dispatch algorithm based on an
applicable stochastic optimization in a real-world testbed.

The rest of this paper is organized as follows: After dis-
cussing related work in Sec. II, we provide an overview
of our proposed system in Sec. III. In Sec. IV, we present
our inference algorithm for estimating future detectable nodes
of intruders, and Sec. V proposes our dispatch optimization
algorithm. After demonstrating real-world validation of our
approach in Sec. VI, we conclude this paper in Sec. VII.

II. RELATED WORK

The intruder detection and coverage problem have been
explored in the wireless sensor network research community.
Most of prior works focus on finding monitoring areas with
high exposure of intruders [2], [9], [23], or scheduling the
patrols to efficiently traverse region of interests for detecting
intruders [13], [16], [24], [26], [27].

Previous works on extracting region of interests for finding
intruders have been studied in sensor networks and surveil-
lance camera networks. In [2], a centralized online learning al-
gorithm is proposed to monitor transmission activities in multi-
channel wireless networks by performing the optimal channel
assignment for wireless surveillance. Wu et al. [23] propose a
real-time video surveillance system with an automated camera
control toward region of interests by keeping track of moving
targets. The authors in [9] try to extract the most important
event areas among all of the event areas to monitor subject
to resource constraints. Given all possible event areas, they
formulate the device activation problem to select few event
areas out of them for wakeup into an online integer linear
program solvable within a polynomial time.

There have also been research in the security patrolling
problem in which security agencies should deploy patrols
and checkpoints to protect from terrorists [13] and illegal
free riders in public transportation [26] currently applied
for fare inspection in the Los Angeles Metro Rail system.
These advanced patrolling strategies are devised based on
a game-theoretic perspective. Both [13] and [26] formulate
the problem of patrolling scheduling into a Stackelberg game

between a leader (the defender) and a follower (the adversary).
A successful patrol’s strategy is known to mix a randomized
schedule over deterministic schedules.

In robotics, similar issue has been explored as search and
pursuit-evasion [6]. The problem is formulated into pursuit-
evasion games where the pursuers aim to catch the evaders,
while the evaders try to avoid the detection from the pur-
suers. Prior works [12], [18] devise a conservative strategy
of pursuers that maximizes search performance in the worst
case scenario from theoretical perspectives. For example, it is
assumed that the evaders have full knowledge of pursuers’
behaviors and environments (e.g., plane, grid, graph, and
polygons). As another stream of the pursuit-evasion research,
incorporating probabilistic approaches [14], [20] provides the
average-case performance of the pursuit strategy.

More closely to our work, previous literature [16], [24], [27]
explores dynamic deployment of mobile sensors (or patrols)
to minimize the total travel distance while achieving high
detection probability. [27] presents a dynamically evolving
sensor deployment strategy with a probabilistic scoring-based
localization algorithm to maximize the sensor field. The work
assumes only mobile sensors in the network, and a simple
binary disk model or a still theoretical probabilistic model
for the target detection. Prior works [16], [24] extend the
problem with the usage of both static and mobile sensors for
intruder detection. [24] presents a multi-sensor fusion model
consisting of two phases where in the first phase, all of
sensors periodically send the measurements from environment
to a cluster head, and in the second phase, the cluster head
decides a set of mobile nodes to move toward the surveillance
position. This work assumes that intruder targets send a signal,
and nearby sensors can measure the energy of the signal
transmitted by the targets for detection. The proposed model
is validated with somewhat unrealistic environments such as
random moving speed of mobile nodes and the theoretical
signal-based target sensing model. Similarly, in [16], under the
sensor location model of stationary two-dimensional Poisson
point process and a variant of the random waypoint mobility
model, the authors formulate the dynamic coverage problem
and solve a mixed strategy Nash equilibrium.

However, most of the above related works take theoretical
approaches by constructing analytical models and proving the
feasibility of the proposed algorithms in proofs or simulations.
Therefore, their works have some limitations in practice due
to their strong assumptions in the intruder detection model
and the mobility model of mobile sensors. There has been a
practical mobile surveillance and wireless sensor embedded
system called iMouse [21] that dispatches mobile sensors to
detected regions by static sensors. We use this algorithm as a
baseline counterpart to our work in evaluation. Our proposed
work goes beyond theoretical prior works: Based on real-
world mobile traces with real-world detection traces using
binary proximity sensors, our work leverages the inferred
knowledge of future movements of intruders to determine
where to dispatch patrols to increase detection probability
while reducing travel distance.
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Fig. 1. Overall procedure of our proposed surveillance system.

III. OVERVIEW

This work designs and evaluates algorithms to au-
tonomously distribute patrols in a building to catch multiple
intruders. Furthermore, we want the algorithm to work in
buildings covered by a limited number of patrols using a
network of binary proximity sensors. We consider a static
one-time dispatch decision problem where patrols (humans
or robots) are dispatched to the selected security checkpoints
on standby until some of intruders come around. The main
objective of this paper is to maximize the detection probability
while minimizing the travel distance of patrols to the intruders.
We use a series of binary detection events to infer possible
future trajectories in a building. For a given set of detectable
nodes on the inferred future trajectories, we aim to find the
optimal patrol dispatch positions to maximize the coverage
of patrols toward intruders particularly when the number of
patrols is less than the number of intruders. In order to prevent
possible crime and perform some responsive defense against
potential intruders, we try to reduce the travel distance from
patrols’ current positions to their dispatched positions.

Our system consists of binary proximity sensors installed
in the hallways of a building. An example of such a sensor is
a passive infrared (PIR) sensor that can detect the presence
of moving objects. The sensors form an ad-hoc network
covering all the possible moving paths in a building. Each
sensor node can deliver detection events to a collection server
over multi-hop routing. Also, it is assumed that we can
differentiate multiple intruders from one another, relying on
seminal multiple target tracking algorithms [7], and thus, the
problem of multiple target tracking is out of scope in this
paper. Instead, we focus more on how the inferred knowledge
for intruders can contribute to improving the patrol distribution
strategy in terms of detection probability and travel distance.

A. Procedure

We consider a scenario such that intruders enter a building
and roam around a building in Fig. 1. Our proposed surveil-
lance system starts operating as soon as a potential intruder
is detected somewhere in the building. The proposed system
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Fig. 2. System overview.

in Fig. 2 performs a proactive automated decision of the patrol
distribution, based on the following three phases as in Fig. 1.

1) Authentication: Our surveillance system starts with an
authentication procedure to check whether a detected person is
a valid registered user in the building. Our system is agnostic
to the exact mechanism used for authentication. The only
requirement is legitimate users have a way of informing the
surveillance system that they are indeed legitimate users. Pos-
sible mechanisms could include swiping the card at the point
of entry, or continuous authentication schemes such as face
scan using surveillance camera. The mechanism could also
include legitimate user carrying a special radio (as part of their
badge) that authenticates with the building systems as they
work and walk in the building. If the system detects a moving
person without successful authentication, the system triggers
surveillance mode in the network by sending a message to the
dispatch center using a collection protocol, where we run the
dispatch algorithm by gathering sensor data from the building.

2) Inferring the future detectable trajectories of intruders:
When the surveillance mode is enabled, all of the deployed
sensor nodes report any movement detection event with their
own node IDs to a central server using a collection protocol,
e.g., CTP (Collection Tree Protocol) [10] in TinyOS 2.x. The
central server continuously collects the reported events and
records a series of node IDs into a chronological sequence.
As the sequence is accumulated with up to a certain length,
we attempt to search over the mobile trajectory database that
has been constructed in the learning phase, and find several
best matching pattern clusters. Based on a set of the probable
matching patterns, we infer the possible detectable trajectories
in terms of node ID where intruders will likely pass through
and be detected accordingly in the near future. We describe
a detailed procedure and algorithms of constructing mobile
trajectories using binary proximity sensors and inferring the
future detectable trajectories of intruders in Sec. IV.

3) Dispatching patrols: Once a set of all possible detectable
trajectories of multiple intruders are inferred, we find the
optimal dispatch positions of available patrols in the network.
We aim to maximize the coverage of patrols toward intruders
(especially where the number of patrols is less than the number
of intruders), while trying to minimize the travel distance
to the dispatched position to achieve patrols’ responsiveness.
By considering possible detectable nodes with their relative
detectable importance (in probability) to cover more intruders



and travel distance to each corresponding node, we solve
a patrol dispatch optimization problem. We present how to
formulate the problem with constraints into a binary integer
program and solve it so that the system can notify patrols of
dispatch locations that maximize the exposure toward intruders
in the network in Sec. V.

IV. INFERRING MOBILE TRAJECTORIES
In this section, we present lightweight yet efficient al-

gorithms of constructing mobile trajectory database using
only binary detection events from binary proximity sensors,
and eventually inferring the future detectable trajectories.
Sufficient amount of binary detection data even without the
location information of deployed sensors can extract rea-
sonably accurate mobile trajectories in indoor buildings [5],
[22]. Beyond the underlying observation, we aim to infer all
possible detectable nodes where intruders will pass by soon
with high probability, using a sequence of past detected node
IDs with a certain length.

Our proposed scheme consists of two phases: (1) off-line
learning phase and (2) on-line execution phase. During the off-
line learning phase, we construct a mobile trajectory database
consisting of classified trajectory pattern clusters that cover all
the possible moving paths in a building. It should be noted
that during the learning phase, we aim to extract a set of
common trajectory segments from normal non-intruders. In the
execution phase, when a potential intruder has been detected
by some number of binary proximity sensors, the central server
will use these information collected by triggered nodes to
infer probable detectable nodes by searching over the database
and finding matching clusters. As intruders tend to deviate
from common movement patterns (while still constrained by
physical environment with some limited degree of freedom),
we use several pattern clusters together to predict security
checkpoints with high detectability.

We use only the sensor node IDs that detect moving objects
without using timestamp to obtain trajectory sequences in the
learning phase, and also a trajectory sequence of each intruder.
The reason is that intruders’ movement may include somewhat
roam-around patterns with indeterministic stay time at certain
areas, and thus learning visiting time patterns from common
movements in the learning phase would rather undermine the
prediction for intruders’ deviating movements in the execution
phase.

A. Mobile Trajectory Database

We present an efficient procedure of constructing a database
of all possible trajectory patterns based on binary detection
events from the network. In the off-line learning phase, a
mobile user explores possible moving trajectories, and binary
proximity sensors that detect the user’s existence send reports
to a central server through a data collection protocol. For a
given physical moving path of the user, we obtain a corre-
sponding trajectory sequence that chronologically records only
node IDs that have detected the user. By exploring all possible
moving paths, the central server can collect all corresponding
unlabeled trajectory sequences.

Once the unlabeled trajectory sequences are collected, we
perform a clustering procedure to make several representative
trajectory groups where similar sequences can belong to a
group. To build a mobile trajectory database, the procedure
is divided into two steps.

1) Calculating pairwise distance between trajectories: To
calculate the pairwise distance between trajectory sequences,
we apply the edit distance to provide different penalty for
insertions, deletions, and substitutions between two sequences.

D(i, j) =

8
>>>><

>>>>:

D(i� 1, j � 1) if Xi = Yj

min

8
<

:

D(i� 1, j) + wins otherwise
D(i, j � 1) + wdel

D(i� 1, j � 1) + wsub(Xi, Yj)

(1)

To transform a sequence of X[1, . . . ,m] into another se-
quence of Y [1, . . . , n], the insertion cost of wins, the deletion
cost of wdel, and the substitution cost of wsub(Xi, Yj) are
incurred. We calculate the edit distance between X and Y as
D(m,n).

However, since the original measure of edit distance tends
to be distorted as the length of one of sequences increases in
our mobile trajectory application, we modify it into a distance
measure with normalization over the length of the shorter
sequence as follows:

D(m,n) =
D(m,n)

min(m,n)
(2)

To make the commutative property hold for the distance
measure, we use wins = wdel. Our real-world experiments
prove that the parameters of wins = wdel = 1 are effective,
achieving the highest intra-cluster similarity, and wsub(Xi, Yj)

should be given with respect to network topology where the
chosen value ranges in [1, 8]. It should be noted that as Xi is
located further away from Yj in network topology, the value
of wsub(Xi, Yj) increases.

2) Clustering and producing cluster signature: After cal-
culating all the pairwise distances of trajectory sequences
collected during the learning phase, we categorize the se-
quences into a fixed number of trajectory clusters. We apply a
classic hierarchical clustering algorithm to build the trajectory
hierarchy from the individual trajectory sequences [17]. To
find the optimal number of clusters, we probe the slope of the
average and the standard deviation of intra-cluster sequence
distance and choose the number of clusters where the slope is
abruptly changed and then becomes relatively flat afterward.
It means that increasing the number of clusters beyond this
point does not significantly contribute to reducing the average
pairwise distance inside each cluster any longer.

When the optimal number of trajectory clusters is found,
and similar trajectories are grouped into a fixed number of
clusters, we produce a cluster signature S per trajectory clus-
ter. It facilitates efficient search for finding matching clusters
for a given test sequence in the execution phase. Instead of
exhaustibly finding relevant mobile trajectories against all of
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Fig. 3. Inference procedure of future detectable nodes from matching clusters
for intruder k.

the training sequences for a given test sequence, the only
thing we need to perform is to compare it to only K cluster
signatures (where the number of clusters is turned out to be
K), considerably reducing computational complexity.

To create a simple yet efficient cluster signature for given
clustered sequences per cluster, we use the longest common
subsequence of clustered sequences as the cluster signature
where the total computational complexity is given by K ·O(n)
where n is the number of trajectory sequences in a cluster.
This is one of the key advantages of our approach in terms
of algorithm running time as opposed to related previous
works on making cluster representations usually accompanied
with multiple sequence alignment techniques taking intensive
computations [8], [15]. Lowering computation complexity
to build compact representations for clusters is even more
important in case that the database needs frequent updates for
more dynamic scenarios.

B. Inferring Future Trajectories

In the execution phase, if a potential intruder has been being
detected by binary proximity sensors in the network, and the
resulting sequence with the length of L is collected at the
central server, our proposed method starts inferring possible
future detectable trajectories by finding matching clusters for
the given sequence X 0

[1, . . . , L]. We present a new cluster
matching algorithm that calculates a matching score between
a cluster signature S and an online sequence X 0 based on
dynamic programming as follows:

M(i, j) =

8
>>>><

>>>>:

M(i� 1, j � 1) + wmat if Si = X 0
j

max

8
<

:

M(i� 1, j) otherwise
M(i, j � 1)

M(i� 1, j � 1)+ ↵/wsub(Si, X
0
j)

(3)

where wmat is the matching score for the exact matching case.
In this dynamic programming, we incur the highest score

for the exact matching (if Si = X 0
j) and the second highest

score for the partial matching by also taking into account the
distance measure between Si and X 0

j , i.e., wsub(Si, X
0
j). It

implies that the more similar a cluster signature and a sequence

are, the higher the matching score is. Based on this measure,
we choose the best matching Kmat clusters (out of the total
K clusters) to infer them as relevant trajectories with similar
patterns for an intruder. The reason that we use not only the
best matching cluster, but a set of several matching clusters
as well is to cover somewhat uncommon moving patterns
deviating from certain common moving patterns based on the
observation that intruders tend to wander around from place
to place.

After selecting Kmat matching clusters, we divide each
matching signature into the matching part, and the future
detectable part coming after the matching part. For a given
matching cluster’s signature S[1, . . . ,m] and the online se-
quence X 0

[1, . . . , L], we find the ending index k of the
matching part that satisfies the following condition:

M(k � 1, L) < M(k, L) = M(k + 1, L) = . . . = M(m,L).

Accordingly, we obtain the detectable node list S[k + 1 :

m] for a matching cluster S. In this way, we collect all the
detectable nodes over the Kmat clusters with the detectable
probability of how often a node appear over the future W
nodes of Kmat clusters’ signatures, i.e., Pdetect|k(A) at node
A for intruder k as illustrated in Fig. 3 where W is the number
of future trajectory nodes. Finally, we use them as all the
inferred future trajectory nodes together with their detectable
probabilities for a given potential intruder.

V. OPTIMAL IN-NETWORK DISPATCH ALGORITHM

Given the likely detectable nodes with their detectable
probabilities, we exploit the inferred knowledge of intruders’
future movements to investigate the best reachable positions
in a stochastic optimization sense. We present an optimal in-
network dispatch algorithm of finding dispatch positions of
patrols in the network that maximizes the coverage of patrols
to intruders, while achieving responsiveness by reducing travel
distance. One of the advantages of our proposed algorithm
is that it considerably benefits security surveillance efficiency
especially where the number of patrols is less than that of
intruders.

We formulate the problem of patrol dispatch into a binary
integer program. Our goal is to find the optimal dispatch node
to which each patrol needs to be dispatched respectively for
covering as many intruders as possible for a given a limited
number of patrols. Concurrently, we want to minimize the
travel distance from a patrol’s initial position to the selected
dispatch node to reduce travel time of patrols.

We introduce indication functions I
(k)
i!Aj

denoting whether
patrol i should be dispatched to node Aj for detecting intruder
k where 1  i  NP (= the number of patrols), 1  j  NB(=
the number of binary proximity sensors), and 1  k  NI (=
the number of intruders). Additionally, we introduce other
indicator functions Ji!Aj indicating whether patrol i is dis-
patched to node Aj .

Based on this notations, we define the objective function to
maximize the detectable probability over the travel distance to
the selected node as
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maximize
X

i,j,k

I
(k)
i!Aj

·
Pdetect|k(Aj)

f(dist(i ! Aj))
(4)

subject to
X

i,j

I
(k)
i!Aj

� 1 8k (5)

I
(1)
i!Aj

= I
(2)
i!Aj

= . . . = I
(NI)
i!Aj

8i, 8j (6)

I
(k)
i!Aj

 Ji!Aj (7)
X

j

Ji!Aj = 1 8i (8)

where Pdetect|k(Aj) is the probability of detecting intruder k
at node Aj , and f(dist(i ! Aj)) can be any kind of distance
measure from the node where the patrol i is currently located,
to node Aj . It should be noted that the function f is a non-
decreasing function of dist(i ! Aj). By penalyzing a long
travel distance from patrol i’s current position to the selected
dispatched node Aj in the objective function, this formulation
implicitly takes into account travel time information.

Constraint (5) ensures that the patrol dispatch should be
considered for every single intruder. Constraints (6) – (7) force
the dispatch event of patrol i to node Aj to potentially detect
every intruder. The last constraint (8) enforces each patrol to
be dispatched to one of nodes in the network.

Finally, we obtain a solution of which security patrol
should be dispatched to which sensor node for maximizing the
objective function Eq. (4), while satisfying constraints Eq. (5)
– (8). The above binary integer program is solvable based
on the branch-and-bound methods [3]. We use a practical
programming solver, bintprog Optimization Toolbox in
MATLAB to obtain the optimal solution.

VI. EVALUATION

We validate our proposed patrol dispatch algorithm by
implementing a whole embedded system consisting of binary
proximity sensors, a collection server, and Android devices.
We constructed a real-world testbed in a university campus
building. We used TinyOS 2.1 and deployed 23 passive
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Fig. 5. Dissimilarity distribution between a training sequence and a testing
sequence in datasets.

infrared sensors (attached to TelosB-variant motes) over three
floors in a 3⇥30⇥43 m2 area at a real-world office building
as in Fig. 4. We placed them by keeping the regular distance
among sensor motes less than 26 m, resulting in the high link
quality of over 90 % and having no isolated sub-network under
0 dBm transmission power.

We implemented the proposed algorithms of inferring mo-
bile trajectories and optimally dispatching patrols on an em-
bedded hardware platform. The stationary binary proximity
sensors were programmed to detect any nearby movement
and deliver the detection event with the sensor node ID to
a collection server through a sensor mote attached to it. We
use the state-of-the-art data collection protocol, CTP [10] as
the underlying collection algorithm. The algorithm of inferring
mobile trajectories runs on the collection server on a MSI
FX61 PC with Ubuntu Linux 12.04 LTS, 2.4 GHz Core 1 Quad
processor, and 1 GB RAM. The server invokes the bintprog
utility in MATLAB to solve our dispatch algorithm. Once all
of dispatch nodes are determined for each patrol, the resulting
decision is distributed to the respective patrol via a notification
message at our Android application.

We obtained a training set of 31 different routes, each of
which we recorded 3 times as in Fig. 4(a) and a testing set
of 10 different routes as in Fig. 4(b). None of the training
routes and the testing routes are from the same physical
path, and only few partial path segments overlap among
them. In addition, to simulate intruders’ uncommon movement
behaviors, the testing sequences are relatively longer than the
training sequences with a factor of 1.9 on average, while
also including wandering-around movements in the subsets of
testing sequences. To quantify how well our testing sequences
reflect intruders’ uncommon movement pattern, we measure
how testing sequences (for intruders) are deviant enough in
movement compared to training sequences in terms of the
longest common subsequence. To show dissimilarity between
a training sequence and a testing sequence, we subtract the
length of the longest common subsequence from the length of
testing sequence with the normalization. Fig. 5 shows that each
testing sequence includes uncommon subsequences with a
substantial portion of 0.77 compared to each training sequence.

In our experiments, the function f = � · dist(i ! Aj) is
chosen where � = 10 and dist(i ! Aj) is the hop distance
from the currently located node of patrol i to node Aj . The
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Fig. 6. Prediction accuracy with respect to the history size L used for inferring
future mobile pattern.

parameters of L = 4, W = 4, Kmat = 3, wins = wdel = wmat

= 1, ↵ = 1 are tuned to use, unless otherwise noted.
We evaluate prediction accuracy of the inferred detectable

nodes by varying parameters in Sec. VI-A, and then investigate
how our dispatch algorithm using the predictive knowledge
performs in terms of detection accuracy and travel distance
in Sec. VI-B.
A. Detectable Node Prediction

We investigate prediction accuracy of detectable nodes with
respect to history size L (as defined in Sec. IV-B) used for
inferring future trajectories. The prediction accuracy is defined
as how well the predicted trajectory nodes from the trained
database actually cover ground-truth nodes in each testing
route. As Fig. 6 shows, using the history size of 4 provides the
highest prediction accuracy reaching up to 83 %. This implies
that a series of four consecutive detection events using binary
proximity sensors are enough to characterize a specific mobile
pattern in the network and accordingly provide a critical clue
for inferring highly probable future mobile patterns. Also, this
demonstrates an important claim that learning even common
patterns of non-intruders can contribute to the correct predic-
tion of future passing-by nodes of intruders with uncommon
movements in parts.
B. Dispatch System Performance

Given the prediction accuracy of detectable nodes, we
explore system performance of our dispatch algorithm that
uses the predicted detectable nodes as input. The performance
metrics are (1) how close dispatched patrols are located from
intruders and (2) travel distance from the currently located
node of a patrol to the dispatched node. To derive more general
results that can be applied for an even more dense or sparse
deployment of binary proximity sensors, we show the number
of hop distance on the path instead of physical distance.

We compare our algorithm against a heuristic dispatch
algorithm [21] that attempts to dispatch mobile sensors to
static sensor nodes that have detected the event. To enable
the algorithm to work with a larger number of intruders than
a given number of patrols (or mobile nodes), we improve the
algorithm by dispatching patrols to highly likely detectable
nodes over the latest L detections of intruders for fair com-
parison with our algorithm. We call it as Naive algorithm for
a baseline counterpart.

We evaluate dispatch accuracy of how accurately the dis-
patched patrols can detect intruders. We measure the shortest
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Fig. 7. Dispatch accuracy in terms of hop distance between dispatched patrol
and intruder.

traveling hop distance from the selected dispatch node to
one of intruders’ future W ground-truth nodes to show the
coverage of patrols toward intruders in the network. In our
experiments, we initially locate two patrols at certain nodes in
the network and three intruders roaming over a subset of 10
different testing routes in the network, unless otherwise noted.

First, we explore the impact of selecting the number of
matching clusters Kmat for prediction on dispatch accuracy
in Fig. 7(a). When we use three matching clusters in the
process of inferring future trajectories and apply the result-
ing detectable nodes for our dispatch algorithm, it shows
the highest performance. This means that employing three
different movement patterns to cover some deviating trajectory
of intruders provides very important information to estimate
where they will be in the near future. It should also be noted
that the optimal Kmat value may be different depending on
variety and irregularity of intruder’s moving paths in different
testbeds and needs to be optimized in the learning phase.
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Fig. 9. Travel distance of patrols with comparison of naive, our algorithm,
the upper bound, and a randomized patrolling.

We investigate how the number of intruders NI affects
dispatch accuracy by varying it as in Fig. 7(b). For a given
NI , we choose all possible NI testing routes out of the
total 10 different testing routes for quantitative analyses. The
performance of our algorithm gets only slightly worse when
we increase the number of intruders, whereas Naive algorithm
shows the worst performance even with only two intruders.
This demonstrates that our algorithm fully leverages a limited
number of patrols to cover an even larger number of intruders
by finding out crucial security locations.

Also, we quantify the robustness of our surveillance system.
In real-world surveillance systems, there should be missing
detection cases due to PIR sensor’s narrow detection angle and
various hardware failures. We investigate how our algorithm
survives even under frequent missing event scenarios. For
this purpose, we try to intentionally omit each detected node
with a certain probability from each testing sequence before
applying our prediction algorithm. After collecting L detected
nodes in the online execution phase, we run our proposed
algorithm to measure dispatch accuracy. As Fig. 7(c) shows,
even under the half-and-half missing detection events, our
algorithm maintains relatively high performance and demon-
strates the robustness of our surveillance system in a real-world
environment. Interestingly, this result can shed a different
light on proving a practical combination with sleep/wakeup
mechanism very effective for energy saving.

Next, we measure how long the dispatched patrols have to
wait for intruders to arrive at the patrol’s dispatch location. To
calculate the patrol waiting time, we perform the deduction
of the number of traveling hops for patrols to dispatch to the
security checkpoint nodes from the number of traveling hops
for an intruder to one of them in our test dataset. Based on our
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Fig. 10. Impact of initial location of patrols on dispatching accuracy.

measurement, the average walking time between two sensor
motes is 10 seconds where the sensor motes are less than 26 m
apart. Thus, the walking speed is about 2.6 m/s. We obtain
the patrol waiting time with an approximation as in Fig. 8,
showing that patrols can encounter intruders sooner than 30
seconds 73% of the time. In less than 7% cases, the intruders
would have already passed by when the patrol reaches the
dispatch location. Thus, in most cases, the patrol can catch
the intruder based on predicted trajectory.

We also evaluate travel distance of patrols from their ini-
tially located nodes to the selected dispatched nodes to show
the responsiveness of our system. To understand the travel
distance achievable by our algorithm, we find a theoretical
limit of travel distance. We choose the closest node to which
each patrol is dispatched from its initial location where in-
truders will visit soon assuming the perfect future knowledge,
irrespective of their resulting detection probability. This theo-
retical limit is optimized only for travel distance, called with
Upper Bound. We also implement a randomized patrol strategy
based on widely used real-world security patrolling [13], [26],
as another baseline. The Randomized strategy lets patrols move
to the next node that is selected randomly among uncovered
nodes, and finish their movements until patrols encounter all
of intruders. As in Fig. 9, our algorithm locates patrols to
dispatched location from their initial location within only
two hops (corresponding to approximately less than 52 m)
with the percentage of over 90 %. It should be noted that
the performance of our algorithm is relatively close to that
of Upper Bound algorithm, whereas Naive and Randomized
algorithms take much longer travel distance for the patrols.
Even if we make the randomized algorithm optimize its travel



distance by admitting the patrol-intruder encounters as long
as they are few hops away each other, our prediction-based
approach outperforms the randomized approach. This validates
the responsiveness of our surveillance system.

Lastly, we study how the initial location of patrols affects
dispatch accuracy in our surveillance system. Given the dif-
ferent initial location of two patrols in Fig. 10(a), it turns out
that dispatch accuracy is severely affected. This implies that
choosing patrols’ starting point is very important to determine
our surveillance system performance. To understand how the
initial location can affect the fidelity, we calculate the relative
distance in [0, 0.5] of how the initially located nodes are far
from the center of moving trajectory in our mobile trajectory
database constructed during the off-line learning phase. It turns
out that as the initial location of patrols is near the center of
moving trajectory on average in the mobile trajectory database,
more effective dispatch node locations are likely selected for
covering more intruders with high fidelity as in Fig. 10(b).

VII. CONCLUSION

We have presented a practical embedded surveillance system
based on a network of binary proximity sensors. The proposed
system consists of the following two main algorithms: (1)
inferring possible future moving paths in terms of detectable
nodes in trajectory based on dynamic programming and (2)
running a stochastic optimization algorithm to compute the
optimal dispatch location for maximizing detection probability
over intruders, while reducing the travel distance for patrols.

Our experiments based on embedded system implementa-
tion in a real-world testbed indicate that our system is able to
detect many intruders even with a less number of patrols, and
is affected less as the number of intruders increases as opposed
to baseline counterpart algorithms. More importantly, even
under severe detectability degradation on binary proximity
sensors, our system maintains high accuracy. If duty cycle
MACs [4], [19] are to be combined with our algorithm,
detection accuracy would not be sacrificed much, while instead
obtaining the benefit of energy saving. We also demonstrate
the responsiveness of our system with short travel distance of
patrols. Our surveillance system fully leverages only a limited
number of patrols to cover an even larger number of intruders
by finding out crucial security locations.

For future work, we would devise a distributed algorithm
that uses only local detection events to compute a reasonably
accurate dispatch strategy, taking even less computation com-
plexity and communication overhead for improved scalability.
Also, by employing energy saving techniques such as duty-
cycle MACs into a surveillance system, exploring a trade-off
relationship between system fidelity and energy saving would
be a promising research direction.
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