
Breakwater: Securing Federated Learning from
Malicious Model Poisoning via Self-Debiasing

Yeawon You∗, JinYi Yoon†, and HyungJune Lee∗
∗Department of Computer Science and Engineering, Ewha Womans University, Seoul, South Korea

†Department of Computer Science, Virginia Tech, Blacksburg, VA, USA
yeawon@ewhain.net, jinyiyoon@vt.edu, hyungjune.lee@ewha.ac.kr

Abstract— Deep learning models deployed on edge devices
leverage locally collected data to extract intelligence, mitigating
privacy concerns associated with external data sharing. Edge
federated learning, an on-device learning paradigm, has emerged
as a promising solution, allowing edge nodes to train models
locally and share only the trained weights, preserving data pri-
vacy. However, it also poses critical challenges of network burden
and potential model poisoning. We introduce a self-debiasing
security framework Breakwater for multi-hop edge federated
learning. We incorporate on-device malicious weight discrim-
inator at each participant, enhancing security and robustness
of the federated learning process. The framework strategically
balances the benefits of participating nodes with timely defenses
against potential malicious clients. Based on the discriminator,
we further embed a self-debiasing mechanism that can determine
whether to retain or discard the weight propagation from its
child nodes. Our Breakwater framework identifies and filters out
harmful weights, ensuring the integrity of the global model.
Our work contributes to the ongoing discourse on federated
learning security, presenting a solution that maintains efficiency
while robustly defending against model poisoning threats. We
demonstrate its efficacy in enhancing the reliability of the multi-
hop edge federated learning process with recovery of up to 69 %
in accuracy under attack, offering a path toward secure and
cooperative distributed learning environments.

I. INTRODUCTION

In the era of intelligent services, as deep learning heavily
relies on the quantity and quality of data, a key source
of intelligence has transitioned to the edge, which tends to
be equipped with various sensors near users in real-world
environments. However, it often suffers from privacy leakage.
To tackle the problem, secured federated learning on edge
devices emerges as a key research area with attention, enabling
knowledge extraction from abundant data at edge nodes with-
out privacy or resource concerns.

In typical federated learning, each edge node trains a model
with its own local data and then sends the trained local model
to a central server to aggregate the models and form a global
model. However, the model aggregation might potentially
impose an excessive burden on the central server and incur a

This work was supported by the Institute of Information & communications
Technology Planning and Evaluation (IITP) grant funded by the Korea gov-
ernment (MSIT) (No. RS-2022-00155966, Artificial Intelligence Convergence
Innovation Human Resources Development (Ewha Womans University) and
No.2021-0-02068, Artificial Intelligence Innovation Hub). The corresponding
author is HyungJune Lee.

bottleneck on the local network to the central server [10]. Simi-
lar to in-network aggregation [6], which brings communication
and computational efficiency to edge sensor nodes with limited
resources, the combination of multi-hop federated learning and
the in-network aggregation paradigm [4] can make federated
learning more efficient for edge nodes. To easily apply into
the existing networks, a tree structure is generally applied to
multi-hop federated learning [4]. From the leaf node, each
participant successively sends the local weight to its parent
node, and then the parent node aggregates the model from its
child nodes up to the root node, which finally constructs a
global model.

Federated learning with multiple edge participants has
raised critical security threats such as model poisoning attacks.
Each node crucially contributes to the whole learning process,
offering new model updates from local data. On the contrary,
the reliance on distributed nodes is adversely vulnerable to
possible threats. When aggregating the models in multi-hop
federated learning, an attacker can pretend to be a normal
participant or intercept the benign model parameters in transit
and instead send some manipulated models to the aggregation
server to distort the global model. One of the prevalent
model poisoning methods is to simply multiply the model
parameters by an arbitrary scaling factor or add noise [1], and
the global model becomes disrupted, incurring critical training
failures. The presence of even a single or very few malicious
participants holds the serious potential to jeopardize the entire
framework.

Various defense mechanisms against model poisoning in
model aggregation have been proposed by employing some
aggregation or filtering rules. Traditionally, a central server
that maintains a global model tends to run a geometric median
aggregation to mitigate the impact of some outlier weights that
can potentially be malicious [5]. Some research works pre-
define a maximum number of the Byzantine expected weights
and discard the weights with significant out-of-distribution [2],
[13], [14]. However, these statistical approaches require col-
lecting the model weights of participants to a single node
to operate optimally. It becomes particularly crucial in multi-
hop federated learning, where the numerous model parameters
from multiple participants should be transmitted across mul-
tiple hops, incurring excessive network and storage overhead
for resource-constrained edge devices. Furthermore, in these

approaches, a predefined number of weights also need to be
discarded, exposing a new attack surface for attacks similar
to [1]. Here, there is a need for a lightweight defense mecha-
nism capable of distributed manner on devices.

Now, we raise an interesting question – Is there a way
to discriminate whether the new model update from a node
indeed contributes or deteriorates for all? Then, how to self-
debiase the intermediate model updates at each participant
level for agile defense? Different from typical federated learn-
ing, we aim to design a defense system in multi-hop federated
learning by gradually performing malicious inspection along
the aggregation path. Diagnosing the maliciousness of the
child nodes recursively and dynamically branching out a
sub-tree with malicious nodes can contribute to secure and
effective federated learning.

In this work, we introduce Breakwater, a novel model
poisoning attack-proof defense framework to gradually secure
a global model in multi-hop federated learning. We embed an
on-device malicious weight discriminator at each edge device,
while reducing centralized overhead at the master node side.
Each node judges the level of maliciousness of its child nodes
and filters out poisonous weights that pose a threat to the
integrity of the global model.

We implement a two-phase mechanism: 1) Anomaly Dis-
criminator with neural networks; and 2) Self-debiasing De-
fense to maintain an attack-free participant network. It sig-
nificantly enhances robustness and security in multi-hop edge
federated learning, ensuring the dependability of the aggre-
gated model despite the potential presence of malicious clients
within the network. This decision-making process becomes
pivotal between weighing the choice to retain a set of nodes for
potential contribution within the framework or rather aggres-
sively discarding suspicious nodes to safeguard the integrity
of the global model. Our work finds an interesting trade-off
between usefulness of new model update and harmfulness of
possible model poisoning.

II. SYSTEM ARCHITECTURE
We consider the problem of anomaly detection and self-

debiasing defense against model poisoning in multi-hop fed-
erated learning. Typical federated learning involves direct
communication between a central server and local devices,
whereas multi-hop federated learning requires multiple hops
of communication between devices. Since the direct com-
munication spans with one hop neighbors, it can potentially
offer some advantages in terms of privacy, fault tolerance,
and scalability. In general, a tree structure is a practical way
to adapt to its underlying network topology and organize
communication in an efficient multi-hop manner. In particular,
we consider a complete binary tree structure to avoid duplicate
weight reflection or traversal with in-network aggregation in
the federated learning scenario.

In the tree-based multi-hop federated learning, each node
initiates training with its own local data. To aggregate the
respective trained model parameters (e.g., weights or biases),
child nodes send their local models to their parent node, and
then it merges the models from itself and from its two child

nodes. This model aggregation is processed recursively from
the leaf node to ensure that the intermediate node receives
the aggregated models from its child nodes. The gradually
accumulated model is propagated up to the root node, which
is a master node who finally constructs a global model. The
global model is disseminated to all other nodes down to the
tree structure. Upon disseminating the global model down to
all of nodes, each node restarts local training process, and this
whole procedure is repeated until the global model converges.
A. Threat Model

An attack-proof federated learning system aims to diagnose
and prevent the learning process from potential attackers.
The attacker nodes participate in federated learning and try
to make the global model collapse. On top of the multi-
hop federated learning approach, it is assumed that malicious
participants may employ an attack strategy to send incorrect
or manipulated model parameters with the intent to poison
the global model or give unauthorized insights into other
participants.

This model poisoning attack is to intentionally inject some
poisoned model parameters to be aggregated into the global
model of federated learning. The presence of even a few
malicious nodes may disrupt the global model, consequently
contaminating all the other nodes within the whole system.
The attackers can be involved in the learning process with
or even without their own data. In particular, it is assumed
that the attackers may multiply a constant value to their
own trained models and propagate the manipulated models
to connected nodes [3]. Through successive attacks, they
can control the global model to be escalated or diminished.
These contaminated parameters mislead final learning process
and hinder a learning system from effectively extracting the
features from local data at the client side.
B. Self-Debiasing against Model Poisoning Attacks

Under the model poisoning attacks in multi-hop federated
learning, our goal is to diagnose and branch out possible mali-
cious nodes to prevent a global model from being poisoned. In
the best effort manner, each participant tries to detect whether
its child nodes are malicious from the bottom layer. If a certain
node is revealed to be highly likely malicious, it needs to be
filtered out before aggregating the model. By recursively de-
fending at each tree level, participants are repeatedly inspected,
maintaining the global model more secured.

Given a tree-based network topology of participants, it is
assumed that the network connection among nodes is stable.
We assume that all of participants train a homogeneous model
architecture to be simply aggregated by averaging the parame-
ters based on FedAvg [9]. As illustrated in Fig. 1, we consider
a dynamic self-debiasing defense mechanism in which a
participant discards possible biases in model parameters by
running malicious discriminator at each level and sends the
sanitized model aggregate toward the central server.

III. DEFENSE SYSTEM WITH BREAKWATER

In a multi-hop federated learning framework with in-
network aggregation, a participating node located at a certain

1. Anomaly Discriminator

Node predicts probability
of received local weight of
child node being malicious

2. Self-debiasing

If a certain child node is suspected of
submitting biased local weights, the node filters
out malicious weight before the node aggregate
with its own local model

[0.96,0.13]

1112 [5:37] YW
overview

3. Debiased global model distributed to participating nodes

Fig. 1. Our self-debiasing defense architecture of Breakwater

tree level aggregates a model with the weights from itself
and its child nodes. The intermediate model, denoted as W̄ i

t ,
represents the weight aggregated using federated averaging
such as FedAvg [9] at a node with depth i at epoch t as follows:

W̄ i
t = FedAvg(W i

t ,W
i+1(L)
t ,W

i+1(R)
t), (1)

where W
i+1(L)
t or W i+1(R)

t is the weight aggregate at the left
or right child node with depth i+1. The final global model is
denoted as W̄ 1

t , indicating the global weight aggregated at the
root node with depth i = 1 at epoch t. After the global model
is calculated and is disseminated to all of the participating
nodes, a local node calculates ∆i

t+1 from its local data, which
is the gradient of the t+1 epoch from the node with depth i,
as follows:

W i
t+1 ← W̄ 1

t − η ·∆i
t+1, (2)

where W̄ 1
t is the global model of previous epoch t.

We construct a layer-wise security framework called Break-
water at each node level by incorporating a malicious node
discriminator and self-debiasing defense mechanism in fed-
erated learning. The discriminator at an intermediate node
evaluates the potential maliciousness of the weights received
from its left and right child nodes, W

i+1(L)
t and W

i+1(R)
t ,

before aggregating them into W̄ i
t along with its own weight

W i
t . The discriminator outputs the probability of each child

node to be malicious, providing valuable information for the
parent node to perform self-debiasing and decide whether to
aggregate or filter out the weight from a particular child node.

The defense policy within our system is contingent on the
risk tolerance of the global model, with a focus on balancing
fast convergence and acquiring diverse data from various
nodes. Parent nodes play a pivotal role in running the defense
policy. When the policy is too strict, even child nodes with a
relatively low probability of being malicious can be discarded.
The strategic approach ensures that the federated learning
system can adapt its defense mechanisms based on the desired
trade-off between convergence speed and security.

A. Anomaly Discriminator

For the discriminator, the data used for discrimination
diverges from existing methods as it lacks access to a diverse
range of weights trained across various nodes with local data.

Instead, a node exclusively gathers the weights directly from
its child nodes. While the limited input data pool poses a
challenge for reliable results using conventional statistical
methods, it aligns with our discriminator design.

Considering that model poisoning attacks often involve with
multiplication by a certain dynamic or fixed value, the distri-
bution of malicious weight parameters deviates and exhibits
distinct tendencies compared to benign weight parameters.
To address this, Breakwater performs a discriminating task
that compares the weights from other nodes to one’s own.
This comparative analysis serves as an effective means of
identifying potentially malicious weights from other nodes.

To enable a discriminator to learn the dynamics of model
weight parameter distribution, it is essential to observe the
history of weight values over time. This time series analysis
provides the necessary context for the discriminator to com-
prehend the evolving patterns and fluctuations in model weight
parameters. By considering temporal aspects of weight varia-
tions, the discriminator enhances its ability to discern between
normal and abnormal weight behaviors, contributing to more
robust defense within the federated learning framework.

Simultaneously, considering the necessity for this process
to occur every epoch (or every n epoch) at each node in
the aggregation phase, it becomes imperative that the process
is lightweight and executed swiftly. Consequently, classifying
weights from several lower nodes separately could be burden-
some. To address this, we have devised a multi-label classifier
capable of handling multiple weights from different nodes
simultaneously, treating each as an independent case. This
approach enables the discriminator to output the probability
of each node being malicious efficiently.

By constructing a lightweight discriminator, it is advan-
tageous to reduce the input dimension wherever possible.
Recognizing that the latter layers’ weight often contains
crucial knowledge compared to the former ones since it
directly contributes to the output, we opt to utilize only the
weight parameters from the classifier layer. This selective
approach ensures that the discriminator remains efficient while
capturing essential information for the discriminating process.
Discriminator D is defined as follows:

[p
i+1(L)
t , p

i+1(R)
t] = D(W i

t ,W
i
t−1,W

i
t−2,

W
i+1(L)
t ,W

i+1(L)
t−1 ,W

i+1(L)
t−2 ,

W
i+1(R)
t ,W

i+1(R)
t−1 ,W

i+1(R)
t−2),

(3)

where p
i+1(L)
t or p

i+1(R)
t denotes the probability of left or

right node at depth i+ 1 to be malicious at epoch t.

B. Defense Policy

We embed the discriminator’s output to the defense mech-
anism to make a final decision on whether to discard the
suspicious weight at epoch t, based on the probability pt of
left or right child node to be malicious. This decision is made
by using a threshold, denoted as θi at depth i. In the context
of a threshold value ranging between 0 and 1, a higher θi
implies less stringent defense regarding the control of weight

1

2 3

4 5 6 7

98 10 11 1312 14 15

Fig. 2. A complete binary tree structure of 15 participant nodes

updates. This prioritizes aspects such as model learning speed
over stability. Conversely, a lower θi signifies a stricter control
mechanism, giving precedence to stability over generality.
The choice of θi acts as a tuning parameter, allowing for
the customization of the defense mechanism’s behavior in
response to the system’s requirements and priorities. This
adaptive approach ensures that the federated learning system
can be tailored to strike a balance between model performance
and stability based on the prevailing conditions and objectives
with Breakwater.

In terms of the defense policy, recognizing an attacker’s
pattern systematically is also crucial, given their tendency
to have specific attack patterns. To achieve this, the former
probability of a certain node being malicious needs to be
observed over subsequent time intervals. This consideration
is computed by applying an exponentially weighted moving
average as follows:

p̄it = (1− α) · p̄it−1 + α · pit, (4)

where p̄it indicates the final smoothed probability considered
for a certain node at depth i to be malicious at time t,
factoring in the former probabilities with exponent α. Taking
into account the potential impact of attacks (with a larger
impact near the root due to in-network aggregation), the θi
value can be fine-tuned for each depth of the node.

Based on the determined θi, the weight at the node with
depth i is discarded if the following condition holds true:

p̄it ≥ θi. (5)

Before aggregating the received weight with its own, each
node runs the defense policy every time to ensure the safety
of the global model. Since our breakwater runs at every certain
epoch, even after discarding the weight of a certain node in a
particular epoch, it is possible to rejoin the learning process
afterward.

IV. EVALUATION

We implemented Breakwater using TensorFlow 2.11. As
shown in Fig. 2, we validated our system on the federated
learning architecture with a complete binary tree topology
of 15 nodes. For the main task of federated learning, each
participant node trains the model of LeNet5 [8] using the
dataset of Fashion-MNIST [12]. We mainly used the training
data divided into each different 666 data for each node, and
in heterogeneous settings, the training data is divided using

0 50 100 150 200
Epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
ai

n
Ta

sk
 A

cc
ur

ac
y

C = -5
C = -3
C = -1
C = 0.05

C = 2
C = 4
C = 6

(a) Attack with various C value with
attacker nodes of 14 and 15

0 50 100 150 200
Epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
ai

n
Ta

sk
 A

cc
ur

ac
y

case0
case1
case2
case3
case4
case5

(b) Attack with different attack
nodes using C = −1

Fig. 3. Attack with different attack parameters

0 20 40 60 80 100 120 140 160 180 200
Epoch

3

2

1

0

1

2

3

St
d.

 o
f W

ei
gh

t P
ar

am
et

er
s

W/o Attack
Under Attack (C=2)
Under Attack (C=0.5)
Under Attack (C=-1)

Fig. 4. A weight distribution of attacker nodes with different attack level C
over epochs

Dirichlet distribution [11]. Regarding the attack simulation, we
multiplied a constant value (C) as done in [3] to the benign
weights from some arbitrary attacking nodes within the tree.

Our anomaly discriminator used a lightweight learning
model of MobileNet-V3 [7] with an activation function of the
sigmoid. As the models closer to the outputs have summarized
information, we only extract the last layer (i.e., classifier)
of the main task model and pretrain the benign and attack
scenarios using various C values. The value for θi is identical
to θ across all of levels in the tree for experiments. For α, we
mainly used 1, which means we fully reflect the instantaneous
maliciousness, unless otherwise noted.

A. Observations
We first investigated how attacks affect the learning model

by varying the attack level C and the attack node in Fig. 3.
As shown in Fig. 3(a), we applied different attack levels C
with positive values but larger than 1 (C > 1), positive values
but smaller than 1 (0 < C < 1), and negative values (C < 0)
from epoch 20. The main task accuracy shows a noticeable
pattern that can be used for distinguishing purposes. Taking a
closer look at the weight distribution regarding the C values
in Fig. 4, the attack with large values of C = 2 leads to an
increase in the weight deviations significantly, while the small
positive value (C = 1) and the negative value (C = −1) rather
sharply decrease the weight variances. This finding stresses
out a necessity to monitor the changes in weight dynamics as
a key indicator for identifying and understanding adversarial
attacks in the federated learning settings.

We further examined the impact of attacks with various
attack nodes with respect to different numbers of attack nodes,
the position, and the depth of the attack node, as illustrated

0 10 20 30 40 50 60 70 80 90
Epochs

0.1

0.2

0.3

0.4
Lo

ss
Loss
Validation Loss

(a) Discriminator loss

0 10 20 30 40 50 60 70 80 90
Epochs

0.6

0.8

Ac
cu

ra
cy

Accuracy
Validation Accuracy

(b) Discriminator accuracy

Fig. 5. Global model performance under attack over epoch

20 40 60 80 120 160
Attack Start Epoch

0.0

0.2

0.4

0.6

0.8

Fin
al

 M
ai

n
Ta

sk
 A

cc
ur

ac
y

W/o Breakwater
W/ Breakwater

(a) Defense for various starting
epoch of attacks

-5 -3 -1 0.05 2 4 6
Attack C value

0.0

0.2

0.4

0.6

0.8
Fin

al
 M

ai
n

Ta
sk

 A
cc

ur
ac

y
W/o Breakwater
W/ Breakwater

(b) Defense for various attack level
C

Fig. 6. Performance of discriminator under various attack scenarios

in Fig. 3(b). Based on Fig. 2, the attack cases indicate the
attack nodes as: case 0) 15; case 1) 14 and 15; case 2) 13
and 15; case 3) 13, 14, and 15; case 4) 7; and case 5) 3,
respectively. If there are more number of attackers from cases
0, 1, to 3, it means that there are more harmful weights, and
thus the global model loses its ability faster. Interestingly, as
the model weights at a higher level are reflected more in the
global model, the main task accuracy degrades earlier from
cases 0, 4, to 5. In the same context, if the same number of
attacker nodes are located at the same level as cases 1 and
2, it shows similar performance degradation. It implies that
when the attacker is at a higher level, the impact of the attack
can be more severe, highlighting the need for strict defense
measures for nodes at the higher levels.
B. Performance of Anomaly Discriminator

Our anomaly discriminator is trained and validated using
the classifier of the main task model trained with differently
sampled data. Since a complete binary tree structure is used for
experiments, our discriminator generates two different outputs
that indicate the probability of maliciousness for the left child
and the right child nodes, respectively. We have pretrained the
discriminator using the balanced number of data for attacks
on the left child node, attacks on the right child node, attacks
on both child nodes, and non-attack of both child nodes. To
prevent the overfitting problem, we have adopted an early
stopping method with a patience of 5. As shown in Fig. 5,
the discriminator converges after 90 training epochs with a
reasonable categorical accuracy of 85 % and higher.

We validated our anomaly discriminator at different attack
epochs of 5, 25, 50, 75, 100, and 125, respectively and various
C values from 0.5 to 2. As shown in Fig. 6, the discriminator
exhibits decent performance against various attack scenarios.
Although we only trained the discriminator using C values
of 0.5 and 2.0, our discriminator can even notice the unseen

0 30 60 90 120 150 180
Epoch

0.3

0.4

0.5

0.6

0.7

0.8

M
ai

n
Ta

sk
 A

cc
ur

ac
y

=0.1
=0.25
=0.5
=0.75

=0.9
Oracle
W/o Breakwater

(a) Various θ values

0 30 60 90 120 150 180
Epoch

0.3

0.4

0.5

0.6

0.7

0.8

M
ai

n
Ta

sk
 A

cc
ur

ac
y =0.1

=0.3
=0.5
=0.7
=0.9

Oracle
W/o Breakwater

(b) Various α values

Fig. 7. Effects of different defense parameters

attack types with C of -5, -3, -1, 0.05, 4, and 6, implying the
extensibility of our discriminator in unrevealed attacks.
C. Performance of Breakwater

Given the probabilistic maliciousness of two child nodes
from the discriminator, Breakwater interprets the risk level
using a certain threshold θ and a weight α on a historical
anomaly. As illustrated in Fig. 7(a), the lower θ value (e.g.,
0.1) tends to branch out the nodes too readily, which means the
removal of benign nodes and thus the loss of local data, leading
to relatively low performance. In contrast, a large θ value
(e.g., 0.9) allows too many opportunities for malicious nodes,
resulting in model weight contamination. It means that we can
control the strictness of our defense system by adjusting the
value of θ. In our experimental settings, the θ value of 0.5
seems effective, and we used it as default.

In Fig. 7(b), we varied α, which is a weight of the former
discriminator output. A higher α value implies that defense
decisions are less influenced by historical maliciousness. In
case of α = 1, we use only the current state to detect anomaly.
To evaluate the impact of historical behavior, we assume that
the attacker engaged in the attack using three different C
values, -0.5, -1, and -3, iteratively. Under this stealthy attack
scenario controlling the impact of the attack, the global model
is able to manage to secure the task performance with around
60 % accuracy. Specifically, the α value of 0.5 turns out to
be the most effective, indicating that partially reflecting the
anomaly history may assist anomaly detection. It can also be
tuned considering potential attack behaviors.
D. Stability under Dynamic Federated Learning Scenarios

Lastly, we examined Breakwater under dynamic learning
scenarios with heterogeneous data settings. We compared the
performance of Breakwater with two baselines: 1) Oracle:
an ideal defense case of discarding the malicious node im-
mediately when the attacks occur, perfectly showing us an
upper-bound under attack; and 2) w/o Breakwater: no defense
method at all against the attacks.

Non-iid data. To simulate non-independent and identically
distributed (iid) data, we used Dirichlet distribution [11] to
divide the training data for heterogeneous participants. Dir(β)
refers to the Dirichlet distribution, where β is a concentration
parameter, which is always larger than 0. The smaller β value
means more heterogeneous. We validated the performance of
Breakwater under attack by multiplying C = 4 to the weight
starting from epoch 20 at two leaf nodes 13 and 15. As shown
in Fig. 8, Breakwater secured the model from the accuracy

0 30 60 90 120 150 180
Epoch

0.4

0.6

0.8
M

ai
n

Ta
sk

 A
cc

ur
ac

y

Oracle
W/ Breakwater
W/o Breakwater

(a) β = 0.5

0 30 60 90 120 150 180
Epoch

0.4

0.6

0.8

M
ai

n
Ta

sk
 A

cc
ur

ac
y Oracle

W/ Breakwater
W/o Breakwater

(b) β = 0.1

Fig. 8. Performance using non-iid data for each participant

0 30 60 90 120 150 180
Epoch

0.4

0.6

0.8

M
ai

n
Ta

sk
 A

cc
ur

ac
y

Oracle
W/ Breakwater
W/o Breakwater

(a) More data on node located in
higher level

0 30 60 90 120 150 180
Epoch

0.4

0.6

0.8
M

ai
n

Ta
sk

 A
cc

ur
ac

y

Oracle
W/ Breakwater
W/o Breakwater

(b) Data in-flow while training

Fig. 9. Performance under different number of data

drop. In Fig. 8(a), the gap between the Oracle and Breakwater
is trivial, when the data is distributed using β = 0.5, indicating
a less biased distribution. Interestingly, in Fig. 8(b), when us-
ing β = 0.1 of extremely heterogeneous data distribution, the
performance with Breakwater even outperforms the Oracle. It
is due to the adverse effect of the attack, where we used C
value larger than 0. At the first few epochs, the attack rather
helps learning similar to using the larger learning rate, before
discarding the node with the potential intelligence extracted
from the local data. It means that each participant has crucial
data for the whole training in realistic heterogeneous learning
scenarios, and the gradual and probabilistic expelling from
Breakwater can not only defend, but also utilize the attack.

Realistic data distribution. Lastly, we assess the perfor-
mance of Breakwater in more realistic settings under two
scenarios involving different data sizes. In Fig. 9(a), we
distributed more data to the node at a higher level, while all
child nodes have half the number of local data. The attack
node 15 (in Fig. 2) has C of -1. Although the different number
of training data among nodes may lead to different learning
speeds, our defense system successfully detects and prunes
malicious nodes.

We also validated when the participating nodes keep col-
lecting the training data, and thus the data is in-flowing in
the middle of training. In Fig. 9(b), nodes 13 and 15 initiate
an attack starting from epoch 20 with a C value of 4. In this
context, as the model dynamically trains on data evolving over
time, Breakwater can effectively identify malicious nodes.
Moreover, by allowing the malicious node to participate for a
few epochs after the attack commences, we can learn from the
newly collected data before ultimately expelling the malicious
node. It highlights that Breakwater is outstanding in situations
with diverse data distributions even for unseen data in training
sets, showing robustness and generalization.

V. CONCLUSIONS

We have presented Breakwater, an on-device self-debiasing
framework to enhance security for multi-hop federated learn-
ing with edge devices. Our model poisoning attack-proof
system incorporates a lightweight anomaly discriminator, en-
suring learning protection in a distributed manner. After com-
puting the maliciousness of the neighboring participants, we
gradually branch out some potential suspicious attackers.

This work offers a lightweight self-debiasing model sharing
mechanism in distributed edge networks in multi-hop feder-
ated learning. As our proposed system Breakwater is easily
adaptable on underlying edge networks by using a simple tree-
based structure, it has high potential to fully leverage model
updates from other edge nodes, with a trade-off between model
addition and model poisoning. As for future work, beyond
detecting and expelling attackers, it would be interesting to
seek some substitute participants and reorganize the aggre-
gation paths to achieve more stable learning. Moreover, we
may further optimize computational overhead of the decision-
making process for more resource-constrained edge devices.

REFERENCES

[1] Gilad Baruch, Moran Baruch, and Yoav Goldberg. A little is enough:
Circumventing defenses for distributed learning. Advances in Neural
Information Processing Systems, 32, 2019.

[2] Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien
Stainer. Machine learning with adversaries: Byzantine tolerant gradient
descent. Advances in neural information processing systems, 30, 2017.

[3] Lingjiao Chen, Hongyi Wang, Zachary Charles, and Dimitris Papail-
iopoulos. Draco: Byzantine-resilient distributed training via redundant
gradients. In International Conference on Machine Learning, pages
903–912. PMLR, 2018.

[4] Xianhao Chen, Guangyu Zhu, Yiqin Deng, and Yuguang Fang. Federated
learning over multihop wireless networks with in-network aggregation.
IEEE Trans. on Wireless Communications, 21(6):4622–4634, 2022.

[5] Michael B Cohen, Yin Tat Lee, Gary Miller, Jakub Pachocki, and Aaron
Sidford. Geometric median in nearly linear time. In Proceedings of the
forty-eighth annual ACM symposium on Theory of Computing, pages
9–21, 2016.

[6] Elena Fasolo, Michele Rossi, Jorg Widmer, and Michele Zorzi. In-
network aggregation techniques for wireless sensor networks: a survey.
IEEE Wireless Communications, 14(2):70–87, 2007.

[7] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen,
Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang,
Vijay Vasudevan, et al. Searching for mobilenetv3. In Proceedings of
the IEEE/CVF ICCV, pages 1314–1324, 2019.

[8] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.
Gradient-based learning applied to document recognition. Proceedings
of the IEEE, 86(11):2278–2324, 1998.

[9] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. Communication-efficient learning of deep
networks from decentralized data. In AISTATS, pages 1273–1282, 2017.

[10] Pinyarash Pinyoanuntapong, Prabhu Janakaraj, Pu Wang, Minwoo Lee,
and Chen Chen. Fedair: Towards multi-hop federated learning over-the-
air. In 2020 IEEE 21st International Workshop on Signal Processing
Advances in Wireless Communications (SPAWC), pages 1–5, 2020.

[11] Gerd Ronning. Maximum likelihood estimation of dirichlet distributions.
Journal of statistical computation and simulation, 32(4):215–221, 1989.

[12] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel
image dataset for benchmarking machine learning algorithms. arXiv
preprint arXiv:1708.07747, 2017.

[13] Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta. Generalized
byzantine-tolerant sgd. arXiv preprint arXiv:1802.10116, 2018.

[14] Dong Yin, Yudong Chen, Ramchandran Kannan, and Peter Bartlett.
Byzantine-robust distributed learning: Towards optimal statistical rates.
In International Conference on Machine Learning, pages 5650–5659.
PMLR, 2018.

