
Towards Self-Organizing UAV Ad-Hoc Networks
Through Collaborative Sensing and Deployment

Narangerelt Batsoyol and HyungJune Lee
Department of Computer Science and Engineering

Ewha Womans University, Seoul, South Korea
Email: hyungjune.lee@ewha.ac.kr

Abstract—In this paper, we consider an aerial ad-hoc network

construction problem using UAVs in a disaster scenario. We aim

to reconnect the communication-wise isolated urban area with

the outside communication infrastructure. Our main goal is to

perform both network exploration and relay deployment tasks

at the same time by taking a progressive optimization toward a

self-organizing network construction. We propose a novel UAV

exploration-and-deployment algorithm that gradually explores

the region of interests and achieves full network coverage in

a fast manner. Then, we present an effective network refinement

algorithm based on clustering that minimizes the number of UAVs

for deployment by finding out essential UAVs, while keeping

the similar network coverage performance. Simulation results

demonstrate that our proposed scheme significantly reduces

the execution time for network exploration and deployment

compared to a baseline counterpart. Also, our cluster-based

network refinement algorithm provides a very lightweight yet

effective solution, well-balancing between UAV resource and

computation overhead.

I. INTRODUCTION

In disaster situations, a large-scale urban area occupied
with various types of complex obstacles may suffer from
pervasive communication failures due to severely collapsed
infrastructure network. In this situation, deploying unmanned
aerial vehicles (UAVs) to form an aerial ad-hoc network by
reconnecting the geographically secluded area to its outside
communication infrastructure (via nearby base stations) would
be an effective solution for search and rescue tasks.

UAVs can be utilized as flexible networking and sensing
devices suitable for information sharing and environment
monitoring [9]. In a post catastrophic disaster, the affected area
may be filled with numerous debris and collapsed building
structures, and their geographical distribution and status are
unknown. To construct a totally new ad-hoc network using
only UAVs that connect to a nearby base station, it is essential
to explore the cluttered region to perceive obstacle-free spaces
for the UAV ad-hoc network.

Regarding efficient area exploration, various algorithms
have been proposed in robotics field using multiple robots [5],
[6], [11]. Bio-inspired algorithms simulating insect behaviors
as well as swarm algorithms have been proposed for efficient
exploration over region of interests (RoI). Although most of

This work was supported by Basic Science Research Program through the
National Research Foundation of Korea (NRF) funded by the Ministry of
Education (NRF-2015R1D1A1A01057902 and NRF-2018R1A2B6004006).

Stage 1: Collaborative Deployment

Explored Area

Stage 2: Refined Network

Base Station

Network
Link

Cluster-based 
Refinement

Fig. 1. Self-organizing UAV network construction with collaborative deploy-
ment and refined network construction procedures

them work well for a relatively small-scale environment, their
large-scale implementation is limited to some extent from the
perspective of collaborative space exploration.

The problem of finding the optimal UAV placement for
maximizing network coverage with the minimum usage of
UAVs is similar to the antenna positioning problem or the radio
network design problem [1], [2], [10]. These are combinatorial
problems suffering from high computation complexity. Prior
works on optimization algorithms for the antenna positioning
problem are not practically feasible in general environments
since they are mostly oriented towards small-scale indoor
systems involving only few antennas. The existing studies
of the large scale radio networks use evolutionary algorithm
or genetic algorithms. However, these algorithms have high
computation overhead because they try to find all possible
combinations of antenna locations for obtaining an optimal
solution, not well-feasible to real-world network environments.

Our previous work [3] has tackled this problem in three
dimensions (3D) by first exploring the unknown urban area
prior to network construction. This work completes to obtain
the global knowledge of obstacles’ geographical distribution
and the height map of them. Then, it finds the optimal
placement for UAVs in the 3D space to obtain the full network
coverage with the minimum number of UAVs. However, due
to its inherent two-phase framework, it takes some amount of
time for UAVs to start the actual network operation.



In this paper, we focus on constructing an ad-hoc network
purely based on UAVs that can extend the network coverage
over RoI and also connect to the outside communication in-
frastructure via base stations. UAVs perform both environment
exploration and relay deployment tasks at the same time by
taking a progressive optimization toward a self-organizing
network construction. UAVs move progressively towards un-
explored areas, while maintaining their intra-communication
among connected UAVs, and also their inter-communication
with at least one base station. We aim to solve the problems
of 1) how to disperse UAVs throughout the unknown cluttered
environment so that the network can effectively extend its
network coverage over RoI as much as possible while staying
within communication range; and 2) how to minimize the
number of deployed UAVs while still not critically affecting
its network coverage performance.

We propose a novel UAV exploration-and-deployment al-
gorithm that gradually explores the RoI while maintaining the
connection with the base station until an almost full network
coverage is achieved in a fast manner. Our algorithm disperses
UAVs from base stations with a gradual expansion toward
their maximum coverage while keeping the minimal network
connection with at least one base station. In the middle of
this procedure, UAVs can perform an obstacle exploration for
understanding its size and geographical distribution. After this
procedure, UAVs become aware of all the accessible areas
where a UAV can be deployed to form its self-organizing ad-
hoc network with other UAVs and base stations.

We further present an optimal network refinement process
that minimizes the number of deployed UAVs by cutting
out some redundant UAVs with the coverage overlapped.
We devise a simple yet efficient clustering-based refinement
algorithm for UAVs, achieving the maximum coverage even
after discarding the least essential UAVs.

Our paper is organized as follows: After presenting our sys-
tem model in Sec. II, we present our collaborative deployment
in Sec. III and network refinement in Sec. IV. We validate our
algorithms in Sec. V and finally conclude our work in Sec. VI.

II. SYSTEM MODEL
We consider the problem of constructing a self-organizing

ad-hoc network with almost full-coverage using UAVs in
a large-scale unknown urban environments. Our goal is to
perform an efficient gradual exploration for UAVs to cover the
entire RoI in a fast manner, while maintaining the connectivity
with the base station through each other and dispatch UAVs
for extending wireless coverage toward terrestrial areas. We
aim to find out a converged point of the minimum number of
UAVs to deploy and their final deployed positions.

We assume that UAVs can communicate with other UAVs
and base stations using a wireless radio such as 802.11 or
802.15.4 within its effective radio range R. For simplicity,
we focus on two-dimensional (2D) flight space with minimal
space exploration by deploying all UAVs at the same height.
UAVs are allowed to traverse over virtual grid cells, where the
Cartesian coordinate system with xy axis portraying a cross-
sectional 2D representation from the above is used. Depending

(a) Dispersion-based deployment (b) Gradual expansion

(c) Obstacle exploration (d) Additional UAV deployment
Fig. 2. Collaborative deployment on 10⇥10 grid size with the communication
range of R = 5, where 5 UAVs are deployed at initial state. Circles represent
deployed UAVs, and dashed lines for valid communication links where one
base station marked with black cross is located at the left bottom corner of
RoI. Arrows represent UAV navigation paths. Yellow cells represent obstacle
cells, while light blue cells are already-sensed cells, and dark blue cells are
unexplored cells. Red circles are initially deployed UAVs; blue circle: obstacle
exploring UAV, white circle: additional successor UAV, and purple circle:
additional UAV for space exploration.

on an obstacle’s occupancy at a grid cell, each grid cell is
specified by 0 for the obstacle-free case or 1 for the obstacle
case.

It is assumed that base stations are located at the four
corners of a rectangular RoI area, and can communicate with
UAVs with the same radio. As long as an information data
is deliverable to a base station, all other network devices that
have connected to a base station can share the information via
the outside base station network. In case that the line-of-sight
communication link between two UAVs is interfered with any
obstacle, we consider it as a communication-incapable link.
For any obstacle-free transmission link, its maximum com-
munication range is given by R. We also assume that UAVs
can sense an obstacle’s occupancy in its directly adjacent cells
using radar sensors or laser scanners [8].

The problem of constructing almost full-coverage aerial
ad-hoc networks can be divided into two sub-problems: 1)
collaborative sensing-and-deployment of UAVs for exploration
and construction of an entire new self-organizing network and
2) network refinement for reducing the number of deployed
UAVs, as illustrated in Fig. 1.

III. COLLABORATIVE UAV DEPLOYMENT

After a disaster scenario, it is important to reconnect a to-
tally secluded urban area with the outside environment. UAVs
can be used to construct a new ad-hoc network by extending
wireless coverage toward parts of the area, and connecting
with other UAVs and possibly with a base station directly
or indirectly (via multi-hop connection). To find out affected
sub-regions where previous and new obstacles are relocated,



the network exploration procedure is usually a prerequisite for
the subsequent network construction. However, it may result
in losing the golden hour for emergency rescue tasks.

Instead, we would rather have a combined approach for both
exploration and network construction at the same time, even if
its ongoing network construction is not perfect at that point. In
this way, we can achieve a more responsive network coverage
over RoI.

To rapidly launch a network construction procedure, UAVs
are dispersed from their corresponding base stations to each
different predefined angle direction, as shown in Fig. 2(a). By
letting UAVs equally cover their RoI from a base station, we
divide the RoI into a set of sub-areas where a base station is
located within one sub-area. Once some UAVs are dispersed
from one base station, they need to only explore their home
sub-area that the base station belongs to.
Algorithm 1 Dispersion-Based Gradual Deployment
1: Input: UAV list, Dispersion angles ✓, Cartesian coordinate
2: Output: Global map H , final UAV locations

// If the cell at xy is an obstacle, then Cxy = 1, else Cxy = 0
3: CircleBorder cells found by Midpoint Circle Algo with radius R
4: DestCells = cells among CircleBorder where (y/x) ⇡ tan(✓)
5: Send UAV list to DestCells, by finding the path by Bresenham’s
6: while (H is not completed up to in-border cells) do

7: // I. Dispersion-based exploration
8: while (UAVs connected to base station && no obstacle cell detected

&& UAV going connected to its fixedNeighbor)) do

9: UAV going follows the path in ✓;
10: Update sensedCellList and Hxy = 0
11: if (can communicate with other UAVs) then

12: For the cells along the communication path, do Hxy = 0
13: else if (cannot communicate within R distance) then

14: Call for additional UAV to assign the obstacle exploration
15: end if

16: if (no UAVs can move farther) then

17: if (on ✓, R/2 path is still left to be explored) then

18: Call for additional UAV
19: end if

20: end if

21: end while

22: // II. Gradual expansion
23: while (All UAVs’ roles not decided) do

24: For each UAV, find its space expansion by triangulation.
25: Select the UAVs with the greatest sensed cell expansion as

UAV going, the selected neighbors as fixedNeighbor
26: end while

27: // III. Obstacle exploration
28: if (At least one Cxy = 1 in sensor range) then

29: Encircle the obstacle base by following Cxy = 1 in the clockwise
direction

30: Update sensedCellList
31: Save in Hxy = 1, where Cxy = 1, else 0;
32: Call for additional UAV
33: Go to the farthest explored cell on ✓
34: end if

35: // IV. Additional UAV deployment: i) Called for successor
36: if (Obstacle Exploring UAV called for its successor) then

37: Go to the calling UAV’s location by finding the shortest path
38: end if // ii) Called for indirect detection of obstacle
39: if (Called by UAVs at ✓a and ✓b) then

40: Send a UAV to ✓c = min(✓a, ✓b) + |✓b� ✓a|/2
41: Perform obstacle exploration
42: end if // iii) Called for space exploration
43: if (called on ✓) then

44: Go to the farthest explored cell on ✓
45: end if

46: end while

A group of UAVs gradually expand their network formation
as long as their multi-hop wireless link is connected to their
base station, as in Fig. 2(b). Whenever a UAV visits a cell, it
records the exploration event into its visitedCellList. In case
that the UAV detects an obstacle at its surrounding cells, we
assign one dedicated UAV for the obstacle exploration task by
diagnosing how large and where the obstacle is located as in
Fig. 2(c). Each UAV continues to perform its gradual expan-
sion, while recording the surrounding obstacle’s occupancy
information of its surrounding cells into its sensedCellList,
until it reaches out to the border of its undertaken sub-area.
If some more UAVs are necessary to maintain connectivity
or expand space exploration, supplementary UAVs can be
dispatched from base stations to the spots in need, as in
Fig. 2(d).

When two UAVs encounter within their radio range, they
exchange their own visitedCellList and sensedCellList. Since
our work operates on top of a grid cell topology focusing
on the cell level rather than the normal point level, we use
the Bresenham’s line algorithm [4] and the Midpoint circle
algorithm [7] for converting from lines and curves to their
corresponding pixel-like cells.

A. Dispersion-Based Exploration
We let UAVs be dispersed from a base station to differ-

ent predefined angle directions. For example, 5 UAVs are
dispersed from a base station located at the left bottom of
RoI to 5 different angle directions ✓ = 0�, 30�, 45�, 60�,
and 90�, as in Fig. 2(a). They continue to follow their own
predefined direction until they reach the farthest cell where
UAV can keep the connectivity with the base station. On
the grid cell topology, we find the circle border cells within
the radio range R from the origin of the base station based
on the Midpoint circle algorithm. Among these border cells,
we choose one with (x, y) that lies on the predefined angle,
i.e., tan ✓ ⇡ y/x. Once they determine their farthest cells
as the destination cells, the navigation path from the base
station to their respective destination cell is obtained by
using Bresenham’s line algorithm. When UAVs reach their
destination cells, they start the gradual expansion process.

B. Gradual Expansion
Once all of UAVs within a sub-area reach their farthest

cells, we check if some UAVs can be further expanded, as
long as its connection to the base station stays via either
one-hop connection or multi-hop connection, as in Figs. 2(a)
and 2(b). To find out an optimal set of UAVs that can be
used for their maximum expansion, we may attempt to list
up all combinations of single UAV expansion. However, this
approach suffers from tremendous computation complexity,
making it infeasible in practice.

Our approach is based on an iterative gradual expansion of
a single UAV at a time. The goal of this process is to find out
a set of UAVs that perform gradual expansion and explore as
many sensed cells as possible in a fast manner. To quantify
how much one gradual expansion can extend its sensing area,
we use a triangulation method as illustrated in Fig. 3. This



(a) Subtractive Triangula-
tion

(b) Additive Triangula-
tion

(c) Single Triangula-
tion

Fig. 3. Triangulations for three different cases. The arrow represents a
UAV’s dispersion angle; the circle is a UAV; a solid line stands for a valid
communication link. The grey area is the approximate expanded sensing area.

method provides some important rules of thumb for expansion,
while satisfying the distance constraint.

We first choose one UAV that will provide the largest
sensing area expansion while other UAVs remain at the same
positions, and its expansion does not break other UAVs’
connection to its base station. If other UAVs get disconnected
from the base station due to the UAV’s expansion, that UAV
can not be used for gradual expansion and stays at the current
cell for the rest of the period. For example, the green UAV as in
Fig. 2(d) does not move for further expansion from Fig. 2(a)
to Fig. 2(d) since the UAV operates as the only relay node
for connecting other UAVs with the base station. After the
first UAV has been expanded for its coverage, we select the
next UAV for gradual expansion based on the sensing area
expansion size. We continue this process until all the UAVs
are considered for the expansion and complete one round of
expansion. In case that there are multiple UAVs with the same
sensing area expansion, we randomly choose one among them.

We provide some more detailed procedures for the area
expansion based on a triangulation method.

1) Triangulation for Two Neighbors: In case of a UAV,
UAVk that is directly connected to two or more UAVs,
we select its two neighbor UAVs that are connected each
other. This selection provides the most effective sensing area
expansion to UAVk. In this case, we apply the subtractive
triangulation method, as in Fig. 3(a). A triangle is formed with
two selected neighbor UAVs, and UAVk calculates its original
triangle size Areaorigin based on the following formula:
Area =

p
p(p� a)(p� b)(p� c), where p = (a + b + c)/2

and a, b, c are each side length of the triangle, respectively.
Now that UAVk moves as far as possible toward its dis-

persion angle until it keeps its connection with two neighbor
UAVs (within the radio range R), we compute the surface area
of the newly created triangle as Areadest. Therefore, the new
explorable area estimate by the expansion of UAVk is given
by Sk = Areadest � Areaorigin, as illustrated with the grey
area in Fig. 3(a).

In case that two closest neighbors of UAVk are not connected
each other, we apply the additive triangulation method, as in
Fig. 3(b). We calculate the new explorable area estimate as
Sk = Areaorigin+Areadest, as illustrated with the grey area
in Fig. 3(b).

We compute Sk for all possible neighbor UAV pairs of
UAVk and choose one pair of two neighbor UAVs with the
largest Sk.

2) Triangulation for One Neighbor: For UAVs that have
only one neighbor UAV or have its dispersion angle of ✓ = 0�

or 90�, we select one best neighbor UAV that can sense more
new cells. UAVk moves as far as possible toward its dispersion
angle, while keeping the connection with its neighbor UAV.
Three vertexes of the new cell position, the original cell
position of UAVk, and the current cell position of its neighbor
UAV form a triangle, and we compute the area size as the new
explorable area estimate, Sk.

We compute Sk for all neighbor UAVs and choose one with
the largest value.

C. Obstacle Exploration
In the middle of dispersion or expansion process, if a UAV

senses an obstacle located at its adjacent cells within the
sensing range, it stops at the current cell, as the blue UAV
in Fig. 2(c). Now the UAV changes its mode to the obstacle
exploration and fully encircles around the obstacle in the
clockwise direction, while keeping updating its sensedCellList.
The UAV stops if it comes back to its original starting cell.

Once the UAV obtains the knowledge of how large and
where an obstacle is geographically distributed at its sensed-
CellList, it is shared with other UAVs as well as its connected
base station. Finally, the UAV prepares to leave for its original
farthest obstacle-free cell with its original dispersion angle by
following the shortest path. Before flying to the cell, the UAV
(marked with blue UAV in Fig. 2(c)) calls for its successor
UAV (marked with white UAV in Fig. 2(d)) from a base station
to replace its location to cover the current area. The original
UAV now flies to the destination cell, while its successor UAV
stays for the rest of time.

If multiple UAVs turn out to encircle the same obstacle
and request their successor UAVs to extend the wireless
coverage toward the obstacle area, only one successor UAV
is dispatched.

D. Additional UAV Dispatch
In case that no UAVs can make further progress for their

expansion, and more than R/2 distance path is still left
to be explored as in Fig. 2(c), an additional UAV (marked
with purple color in Fig. 2(d)) is dispatched to its originally
calculated farthest cell toward the corresponding dispersion
angle for letting it complete the maximum expansion.

We repeat all previous steps until all the cells including in-
border cells, which are cells with two cell distance from the
center border of its sub-area, are explored. As in Fig. 2(d),
all the cells with light blue color are explored except two-cell
wide boundary cells with dark blue color. To the end, we com-
plete the collaborative exploration-and-deployment algorithm
with total network coverage of 100%, as in Algorithm 1.

IV. NETWORK REFINEMENT PROCEDURE

Once the exploration-and-deployment process takes place
in each sub-area where one base station is located at its
corner, we achieve 100% full network coverage Fig. 4(a).
Since many UAVs have been leveraged for various roles of the
initial dispersion, the obstacle exploration, and additional UAV
supplement, there are inevitable overlapped network coverage
to some parts of terrestrial cells.



Algorithm 2 Cluster-Based Refinement
1: Input: UAV list, Network Information, R
2: Output: refinedUAV list, Refined Network Information

// P : coverage overlap ratio, M : intra-cluster minimum coverage ratio
// I. Overlap-based clustering

3: for (k in UAV list, starting from the UAV with the largest number of
one-hop UAVs) do

4: for (clusterList) do

5: Populate cluster with UAVk
6: Find CoveredListUAVk

, covered cells by UAVk
7: for (Directly connected neighbors of UAVk) do

8: Starting from closest located neighbor:
9: Find CoveredListneighbor

10: Find OverlapCells between CoveredListUAVk
and

CoveredListneighbor
11: if ( |OverlapCells| >= P ⇥ |CoveredListUAVk

|) then

12: Populate clusterList(k) with this neighbor
13: end if

14: end for

15: end for

16: end for// Clear up process for cluster, eliminating duplicate ones and any
cluster which is sub-member of another cluster
// II. Intra-cluster refinement

17: for (G in clusterList) do

18: //Compute the coverage of cluster G
CoverageG = [coveredCellListUAVk

, where UAVk ⇢ G
19: flagStop = empty
20: while ( len(G) >=1) do

21: If the first element of G is in flagStop, then break
22: Starting from the first element UAVi of G:
23: CoveragetempG = [coveredCellListUAVk

,
where {G \ UAVi, UAVk ⇢ G}

24: if (|CoveragetempG| < M ⇥ |CoverageG|) then

25: break;
26: end if

27: if (all UAVs connected to base station) then

28: Remove UAVi from G, UAV list and clusterList
29: else

30: Put UAVi at the end of G and in flagStop
31: end if

32: end while

33: end for

// III. Inter-cluster refinement
34: //Compute total coverage CoverageTotal = [coveredCellListUAVk

,
where UAVk ⇢ UAV list

35: flagStop = empty
36: while ( len(UAV list) >=1) do

37: If the first element of UAV list is in flagStop, then break
38: Starting from the first element UAVi of UAV list:
39: CoveragetempTotal = [coveredCellListUAVk

,
where {UAV list \ UAVi, UAVk ⇢ UAV list}

40: if (|CoveragetempTotal| < 0.9⇥ |CoverageTotal|) then

41: break;
42: end if

43: if (all UAVs connected to base station) then

44: Remove UAVi from UAV list
45: else

46: Put UAVi at the end of UAV list and in flagStop
47: end if

48: end while

We want to find out some essential UAVs that play more
effective roles of network coverage and UAV network con-
nection toward base stations. The challenge is to find and
remove ineffective UAVs, isolated UAVs, or network holes
without significant coverage degradation. Instead of listing up
all possible combinations for the removal of some selected
UAVs from the current deployment state, requiring too much
complexity, we propose a lightweight cluster-based refinement
algorithm. Our algorithm suggests a set of the least essential

(a) Full-deployment state (b) After-refinement state

Fig. 4. Full deployment state and after refinement state on 40⇥ 40 grid size
test with communication range R = 10 where base stations are located at
four corners represented by black crosses. Circles represent deployed UAVs
that belong to the same cluster with the same color, and dashed lines are valid
communication links toward at least one base station. Yellow cells represent
obstacle cells, while dark blue cells are unexplored cells by any UAVs.

UAVs and removes them from the current network, while the
overall network coverage performance is fairly maintained.

Our network refinement process is divided into three steps:
1) overlap-based clustering such that each cluster is formed
based on the criterion of wireless cell coverage overlap, 2)
intra-cluster refinement that removes ineffective UAVs within
a cluster, and 3) inter-cluster refinement across clusters, as
described in Algorithm 2.

A. Overlap-Based Clustering
Given the deployment state of all the UAVs, we let the

UAVs form clusters based on how many cells are redundantly
overlapped with wireless coverage. First, each UAV finds
its directly connected one-hop neighbor UAVs. We prioritize
UAVs with respect to the number of one-hop neighbor UAVs to
determine the clustering order. The first UAV with the largest
number of one-hop neighbor UAVs starts clustering.

Suppose that UAVk turns out to cover nearby cells within
the radio range, in coveredCellListUAV k . The UAV checks
if how much its own covered cell is overlapped with its
one-hop neighbor UAV’s. If the overlap ratio is larger than
overlap P% (e.g., 60%, 70%, etc.), UAVk, which is a cluster
head, selects the corresponding one-hop neighbor UAV as its
cluster member. Once the first cluster is formed, the next UAV
with the second largest number of one-hop neighbor UAVs
continues this process as a cluster head. It should be noted that
even after completing this process, UAVs that do not belong
to any cluster will never be removed during the refinement.

B. Intra-Cluster Refinement
Once the clustering procedure is completed, we perform

the first refinement procedure within each cluster. We start
from the largest cluster by removing one UAV at a time
with the priority of hop distance from the cluster head,
as long as a cluster still keeps at least M%, intra-cluster
minimum coverage ratio (e.g., 80%) of its original coverage
cells. A UAV can not be removed if its removal makes other
UAVs disconnected from base stations. If a UAV belonging
to multiple clusters is removed from a certain cluster, it is
also removed from all the belonging clusters. All the removed
UAVs go back to their closest base station.



C. Inter-Cluster Refinement
We perform the last refinement procedure across clusters.

Now we form one higher-level cluster which all the remaining
UAVs belong to. We try to randomly choose one UAV and
remove it at a time as long as its removal still satisfies
the inter-cluster minimum coverage ratio (e.g., 90%) of the
original total coverage. The final UAV deployment after all
the refinement process is illustrated in Fig. 4(b).

V. EVALUATION

We evaluate our proposed algorithms in a simulated territory
environment of 120⇥120 m2. To simulate the urban territory
environment, we randomly generate obstacles over the RoI
area, as in Fig. 4. We use a grid cell topology where the size
of a virtual cell is 3⇥3 m2, and the total number of cells is
40⇥40. The RoI area is divided into 4 sub-areas where a base
station is located at the corner of each sub-area. We use a unit
disk radio model with the radio range R of 30 m. The flying
speed of UAVs is simulated with 3 meter/sec (or 1 cell/sec),
and the height for UAV exploration and deployment is fixed
to R/2 from the ground.

To obtain statistically meaningful evaluation results, we
use 100 randomly generated test dataset with each different
obstacle distribution and provide the average and the standard
deviation with error bars, if appropriate. Our evaluation is
divided into two parts of collaborative UAV deployment and
network refinement performance. To validate our collaborative
UAV deployment algorithm, we measure the required deploy-
ment time before the actual operation, the number of UAVs
over time, and exploration efficiency in travel distance. We
compare the proposed algorithm against our previous work [3].
For network refinement, we first show how our cluster-based
refinement algorithm behaves by varying tuning parameters.
Then, the performance is compared with a previous evolution-
based optimal approach [2], in terms of the number of UAVs,
computation overhead with respect to total network coverage
ratio.

We have used the parameters of overlap threshold P = 60%
and intra-cluster minimum coverage ratio M = 80% for our
refinement algorithm, unless otherwise noted.

A. Collaborative Deployment Performance

We compare our proposed algorithm against our previous
work [3]. Our previous algorithm tackles the same problem
in 3D with two separate phases. In the former phase, UAVs
completely explore every cell over the whole RoI area and
construct the height map over all the explored cells. In the
latter phase, it finds effective deployment positions of UAVs in
3D with a hierarchical way. This paper focuses on constructing
one-phase quick UAV networks in the relatively simple 2D
space over RoI with minimal obstacle exploration. We com-
pare them in terms of the efficiency of UAV exploration and
UAV resource under the same resulting coverage performance
(98% used in Fig. 5).

We have initially deployed 5 UAVs with the dispersion
angles ✓ = 0�, 30�, 45�, 60�, and 90� from each base
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Fig. 5. Efficiency of UAV exploration and UAV resource for our work vs.
previous work, under the same coverage performance condition. The red
points represent the end of the deployment process, while the blue points
do right after the refinement process.

stations, and the total number of UAVs is 20 at the beginning
of our experiment. As in Fig. 5, we show the dynamics of
the average number of UAVs over execution time for our
work and the previous work. The red points represent the
end of the deployment process, while the blue points do
right after the refinement process. Although both algorithms
have achieved 100% full network coverage at the end of the
deployment process, the previous work has spent 1636 sec in
total, consisting of 960 sec for the full exploration, 180 sec
for returning back to base stations, 426 sec for the full
deployment, and 70 sec for the refinement. On the other hand,
our work has spent 288 sec in total, consisting of 198 sec for
exploration-and-full-deployment and 90 sec for the refinement.
This means that this work outperforms the previous work with
a factor of 5.7 in terms of responsiveness until reaching the
steady-state deployment performance.

Regarding the usage of UAV resource, our algorithm has
required 7 more UAVs than the previous work up to the
full deployment. However, after the refinement process, our
algorithm has reduced 15 UAVs by filtering out some in-
effective UAVs and has used an even smaller number of
UAVs than the previous work. This implies that our refinement
process has effectively been embedded with our dispersion-
based deployment.

From the perspective of travel distance of UAVs, we mea-
sure the average travel distance per UAV for all the UAVs
including removed UAVs after refinement. Since the previous
work takes some amount of time for 3D obstacle exploration
to obtain the height, the 3D obstacle exploration has been
replaced by its 2D obstacle exploration by just encircling it at
the ground, as done in this work for fair comparison. Fig. 5(b)
shows that UAVs using our algorithm has traveled much less
compared to the previous work for both full-deployment and
after-refinement cases, with a factor of up to 1.6. This result
shows the efficiency of gradual exploration and deployment
by UAVs in one phase.

B. Network Refinement Performance

First, we show how our cluster-based network refinement
algorithm works with respect to our internal parameters, i.e.,
overlap P% and intra-cluster minimum coverage ratio M%
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Fig. 6. Average number of UAVs and total network coverage ratio at the end
by varying the overlap threshold for clustering, and the intra-cluster minimum
coverage ratio for refinement under the scenario of 38 deployed UAVs on
average before the refinement.

in terms of the number of UAVs and total network coverage,
as in Fig. 6. We use the same test scenario as in Fig. 5 where
the number of deployed UAVs is 38 at the full-deployment,
before the refinement. From the perspective of UAV resource,
as the overlap P% threshold increases, we need more UAVs to
meet a higher clustering requirement (as in Fig. 6(a)), leading
to higher total network coverage performance in return (as in
Fig. 6(b)). Once the clustering process is completed, as the
criterion on whether a certain UAV can be discarded becomes
more stringent (i.e., as intra-cluster minimum coverage ratio
M% increases), we end up with more UAVs to deploy and its
resulting higher total network coverage performance. In our
algorithm, the combination of using the coverage overlap of
60% and the intra-cluster minimum coverage ratio of 50%
provides a practical trade-off point where the total network
coverage of 95% can be achieved using only 17 UAVs in the
end.

Lastly, we compare our algorithm with an evolution-based
optimal placement algorithm [2] to validate the refinement
performance in Fig. 7. We have adapted the evolutionary algo-
rithm to our refinement algorithm so that we effectively find
and remove only one UAV per each iteration that turns out to
be the one with the minimal contribution to the entire network
coverage. On the other hand, the evolutionary algorithm finds
all possible combinations of UAVs that can lead to the largest
total network coverage. Based on this, it removes relatively
ineffective multiple UAVs per each iteration. As shown in
Fig. 7(a), under the total network coverage requirement, the
evolutionary algorithm reduces more unnecessary UAVs than
ours, resulting in more efficient usage of UAV resource. How-
ever, the evolutionary algorithm suffers from tremendously
high computation overhead compared to ours in Fig. 7(b). This
result implies that our refinement algorithm provides a much
more lightweight practical impact.

VI. CONCLUSION

We have presented a self-organizing aerial ad-hoc net-
work construction using UAVs with a necessary full-coverage
requirement in a large-scale unknown urban environment.
We have proposed an iterative one-phase exploration-and-
deployment algorithm to construct a new ad-hoc network over
RoI that can reconnect with the existing outside network
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Fig. 7. Average number of UAVs and average running time for our refinement
algorithm vs. evolution-based optimal algorithm under the scenario of 38
deployed UAVs on average before the refinement.

infrastructure in a more responsive fashion. Also, we have
incorporated an effective cluster-based network refinement
algorithm that filters out unnecessary deployed UAVs with sig-
nificant coverage overlap with other essential UAVs, without
critically hindering the overall network coverage performance.
Our experimental results show that our proposed algorithms
significantly outperform recent works in terms of the number
of UAVs for deployment, execution time, and computation
complexity.

For future work, we may come up with an adaptive dis-
persion scheme for UAVs to continuously determine the next
visiting cell based on the learned environment dynamics. In
this way, we can more evenly distribute only the essential
UAVs into an even more complicated obstacle environment.
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