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Abstract—In this paper, we consider a route recovery problem
using Unmanned Aerial Vehicles (UAVs) as relay nodes to
connect with terrestrial ad-hoc networks in realistic disaster
scenarios. Our main goal is to perform network probing from
the air by UAVs and find out crucial spots where both local
and global routing performance can significantly be recovered
if they are deployed. We propose a route topology discovery
scheme that extracts the inherent route skeletons by stitching
partial local paths obtained from simple packet probing by
UAVs, while exploring a designated Region of Interest (RoI)
by an adaptive traversing scheme. By leveraging the captured
topology, we dispatch a limited number of UAVs by an iterative
UAV deployment algorithm and provide a lightweight yet effec-
tive network hole replacement decision in a heuristic manner.
Simulation results demonstrate that our traversing algorithm
reduces the complete coverage time, the travel distance, and
the duplicate coverage compared to a previous work, DroneNet.
Our subsequent iterative deployment algorithm greatly recovers
severely impaired routes in a damaged network, while substan-
tially reducing computational complexity.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have been considered

as an emerging disruptive technology to facilitate dynamic

in-situ operations such as sensing real-time terrestrial events

from the air and unmanned package delivery. These UAVs can

form their own aerial networks, while also communicating

with terrestrial networks [5], [8], [12]. The recent network

has been evolving into forming a two-tier network of aerial

and terrestrial ad-hoc networks as a promising self-organizing

network thanks to the on-the-fly characteristic of UAVs.

In disaster situations, the terrestrial network can be broken

into several isolated sub-networks. The network can be even

more critically affected if some crucial relay nodes in the

middle of networks become lost or in failure. In this situation,

employing UAVs can be a rescue to address the network hole

problem by being deployed as temporary relay nodes [1], [2].

Regarding the network coverage of agents such as vehicles

or robots, researchers in robotics have extensively investigated

the problem of path planning and space exploration [3],

[14], [16]. Although most of them aim to mitigate duplicate

coverage among agents, they can not directly be applied to the

UAV context because there is no consideration of networking

capability and lightweight computation.
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There have been several efforts to address the network

hole problem in an alternative way by repairing a damaged

network with UAVs [6], [7], [13]. UAVs are dispatched to

some critically damaged spots and are served as bridge nodes

to connect a terrestrial sub-network with another from the

air. They aim to recover the broken network connectivity by

utilizing UAVs based on Delaunay triangulation [6] or a game

theoretic approach [13]. However, both approaches are hard

to be applied to dynamically changing networks because of

their high computational complexity. Our previous work [7]

frames the network reconstruction as two-phase problems

of network probing and UAV deployment. After collecting

empirical link connectivity information over the terrestrial

network, UAVs are determined to be dispatched into some

link-impaired regions. Although this approach finds effective

spots to repair local network connectivity, it does not capture

non-local routing dynamics, also suffering from computation

complexity for solving an optimization problem.

In this paper, we consider both local and non-local network

connectivity using UAVs to accomplish a more suitable UAV

deployment in terms of route reconstruction. Based on a

newly designed cost effective motion planning algorithm,

UAVs drop off probing packets that keep being relayed within

several hops and retrieve them to parse their distinctive partial

local paths. We discover the underlying route topology by

constructing the collected partial paths via path stitching,

where we borrow some general idea and term from the wired

network [9].

By leveraging the obtained topology information con-

structed by UAVs, we locate and prioritize network holes

by capturing a more global impact on the overall routing

structure. To understand the inherent route skeletons, we

perform connectivity-based clustering of stationary nodes and

UAV deployment candidate spots. We iteratively find most

effective deployment locations, leading to significant route

improvement over the damaged network.

Our main contributions can be summarized as:

• We design an adaptive UAV network traversing algorithm

that outperforms existing previous algorithms in terms of

traveling time and distance, and duplicate coverage.

• We present a route topology discovery scheme to extract

the inherent route skeletons by stitching partial local

paths obtained from simple path probing by UAVs.

• We propose a lightweight network hole replacement



Fig. 1. Overall procedure of our proposed algorithm

algorithm that dispatches a limited number of UAVs to

the crucial spots which can achieve both local and global

improvement of routing performance.

The remainder of this paper is organized as follows. After

introducing our problem and system model in Sec. II, we

present our route topology discovery scheme with motion

planning in Sec. III and our UAV deployment algorithm

in Sec. IV. After presenting the evaluation results of our

proposed approach in Sec. V, we conclude this paper in

Sec. VI.

II. SYSTEM MODEL

We consider a route recovery problem using UAVs such that

they are deployed as relays to be connected with terrestrial

ad-hoc networks in realistic disaster scenarios. The ad-hoc

networks are supposed to support any to any communication.

Our main objective is to perform network probing from the

air by UAVs and find out crucial spots where both local

and global routing performance can greatly be repaired if

deployed.

We assume that a UAV can communicate with terrestrial

ad-hoc networks and other UAVs using a designated wireless

interface such as 802.11 or 802.15.4 within its radio range,

while all of ad-hoc nodes and UAVs use the same transmit

power. It is also assumed that UAVs are equipped with

the Global Positioning System (GPS), and free to move to

a certain position without physical restrictions or obstacle

collisions.

The route recovery problem can be divided into two sub-

problems: 1) route topology discovery from the air through

network traversing of UAVs, and 2) lightweight UAV deploy-

ment as additional network relays to efficiently cope with

network breakdown in disaster scenarios.

After all of UAVs finish network exploration over a given

Region of Interest (RoI), they gather at a designated place

to share the collected network probing information. Based on

the constructed route topology, their deployment location is

computed, and UAVs are accordingly dispatched to be used

as relays as illustrated in Fig. 1.

III. ROUTE TOPOLOGY DISCOVERY

When a catastrophic disaster occurs, a terrestrial network

of stationary ad-hoc nodes may be damaged severely. To

maintain reliable route paths over stationary ad-hoc networks,

preserving local wireless connectivity to neighboring nodes is

essential [7]. Although local connectivity is a good indicator

of quantifying local route path stability, it does not necessarily

embed the global routing structure within itself. Thus, it is

(a) Logical grid coordinate with adaptive
adjustment of navigation width L by UAVs

(b) More optimized navigation decision, leading to a
longer traverse before the next decision

Fig. 2. Adaptive UAV traversing with an effective navigation decision

important to diagnose the route status on the damaged network

by discovering its global route topology beyond the local one.

In this section, we propose a route topology discovery

scheme that extracts the inherent route skeletons using sim-

ple packet probing by UAVs. Our route topology discovery

consists of two phases: network traversing and topology

construction via path stitching.

A. Adaptive UAV Traversing

Each UAV explores a designated RoI where its logical grid

coordinate consists of m×m vertexes as in Fig. 2(a). It follows

an independent motion planning based on one of eight pre-

defined zigzag patterns, e.g., North-East, North-West, South-

West, East-North, East-South, West-North, and West-South

with the orthogonal traversal width L.

Each UAV performs its navigation by generating one zigzag

trajectory out of eight patterns with the longest path toward

its moving direction up to either the boundary of RoI or

an already-visited vertex. To keep track of visited vertexes,

it records the visiting vertex ID in its vertex-visit-list. If a

UAV becomes connected with another UAV within the radio

range, they exchange their own vertex-visit-list each other

and merge them to avoid duplicate coverage on its future

navigation trajectory. Since this work follows similar high-

level motion planning taken from our previous work, please

refer to DroneNet [7] for more detailed information.

DroneNet has a drawback of using the fixed L regardless

of on-going navigation progress with other UAVs. This work

adaptively controls the orthogonal width L of the UAV

navigation. Initiating its zigzag trajectory with the given L,

the UAV can have a more chance to navigate its adjacent

vertexes before moving away toward its determined moving

direction. As the RoI has been explored further together with

other UAVs, it may find any duplicate visited vertex from

the exchanged vertex-visit-list with another UAV within radio



Algorithm 1 Adaptive Multi-UAV Network Traversing

1: Input: CurrentVertexID

2: Output: NextVertexID

// Part I: Motion planning
3: if (future-vertex-visit-trajectory == ∅) or (future-vertex-visit-trajectory’s

next vertex is taken or null) then
4: if (any unvisited neighboring vertex in North, East, South, West)

then

5: Regenerate the future-vertex-visit-trajectory
with the longest length that starts from an unvisited vertex;

6: NextVertexID = future-vertex-visit-trajectory’s first vertex ID;
7: Move with one step to the next vertex;
8: else

9: if (there exists any unvisited vertex) then
10: NextVertexID = the nearest vertex’s ID on the grid coordinate

from CurrentVertexID;
11: Invoke path-probing();
12: Fly to the next vertex;
13: else

14: Terminate;
15: end if
16: end if

17: else

18: NextVertexID = future-vertex-visit-trajectory’s next vertex ID;
19: Invoke path-probing();
20: Move with one step to the next vertex;
21: end if

// Part II: Path probing
22: Function path-probing()
23: Broadcast a path-probing packet;

24: Any neighboring stationary nodes keep relaying the probing packet
up to n hops, while recording a series of relay node ID in the header;

25: Receive completed path-probing packets stored at the currently
visiting node initiated by itself or other UAVs;

26: if (any UAVs within radio range) then

27: Exchange vertex-visit-list and update it;
28: if (any duplicated visited vertexes) then
29: Decrement the navigation width L by 1;
30: future-vertex-visit-trajectory = ∅;
31: end if
32: end if

33: EndFunction

range. In this case, it decrements the navigation width L by 1

so that it can lessen potential duplicate coverage on its future

movement progress as depicted in Fig. 2(a). Also, we devise

the future vertex trajectory decision rule of DroneNet that

just randomly selects a direction with a non-visited vertex

as its next move and then generates its future trajectory at

the selected vertex after moving to it (shown at the left

in Fig. 2(b)). In DroneNet+, instead, each UAV regenerates

its future trajectory considering nearby non-visited vertexes

as soon as it completes the traversal from its previously

generated trajectory (shown at the right in Fig. 2(b)).

This adaptive UAV traversing scheme DroneNet+ greatly

advances the previous DroneNet in motion planning efficiency

by lowering duplicate coverage and travel distance until all the

vertexes are completely covered by UAVs.

B. Topology Construction via Path Stitching

We let UAVs diagnose the overall network status during

traversing by relaying path-probing packets. We construct a

global route aggregate by stitching partial local route paths

obtained from the path-probing packets via path stitching.

1) Probing partial local path by relaying over a few hops:

When a UAV visits a vertex during network traversing, it

Fig. 3. Topology discovery by stitching partial local route paths (over two
hops) via path stitching

broadcasts a path-probing packet to its stationary neighbors

within radio range. The stationary nodes are designed to relay

it up to only n hops by recording their own node ID and the

current number of transmission hops in its header. The path-

probing packet finishes being relayed to a certain stationary

node upon completing n hop transmission, and the recorded

path-probing information is stored at the node. This probing

information is collected later by a visiting UAV.

2) Topology discovery via path stitching in off-line: Once

the network traversing procedure is completed, all of the

collected local path information by multiple UAVs are used to

extract a global route topology in off-line. Based on the path

trace information, we construct an undirected graph topology.

Given the local route path information ubiquitously col-

lected by UAVs, we finally construct a global route topology

by stitching all the links together as in Fig. 3.

IV. ITERATIVE UAV DEPLOYMENT

In this section, we present an iterative UAV deployment

algorithm that improves routing performance over the dam-

aged networks through a heuristic approach. We locate and

prioritize network holes based on the captured route topology

in Sec. III and deploy UAVs as relays to connect with

terrestrial networks.

To understand the inherent global routing structure over

the networks, it is necessary to find out crucial skeleton nodes

that connect not only local neighboring nodes but rather other

neighboring sub-networks. To extract those skeleton nodes in

the networks, we incorporate a connectivity-based clustering

algorithm and use the selected cluster heads to efficiently

connect via inter-cluster networking.

Once the skeleton nodes are obtained, we associate two-

tier networks: a network of real nodes (i.e., cluster heads)

and the other network of virtual nodes (i.e., vertexes, which

are candidate spots for UAV deployment). To gain the knowl-

edge of parts of vertexes with high connectivity toward real

skeleton nodes, we precompute a measure of how much the

overall routing performance can be improved when comparing

between before and after UAVs are deployed at the vertexes.

After prioritizing those candidate vertexes, we dispatch

UAVs to the most effective vertexes that lead to the most

influential network repair in terms of routing performance.

We iteratively find vertexes, deploy UAVs to their locations,

and perform this iteration continuously until all the UAVs are

dispatched.

A. Connectivity-based k-hop Clustering

We present a simple yet efficient connectivity-based k-hop

clustering method performed in a centralized manner similar

to [4], [11]. Using a constructed route topology, we count the



(a) Possible vertex cases to connect two cluster
heads at each end within two hops (2nd Case)

(b) Validation check
with no better route

Fig. 4. Iterative clustering and deployment decision procedure

number of connected neighboring nodes for each node within

k hops and then prioritize the node list in the descending

order.

We initially elect a node with the highest connectivity as

the first cluster head. Given this cluster head, all of the nodes

within k hops from the cluster head join this cluster as cluster

members. Once a cluster head and its belonging members

are determined, we exclude these nodes from the above node

list. We continue this procedure for the remaining nodes in

the list until all the nodes are traversed. If there are a few

nodes with the same number of neighbors in the cluster head

selection, we randomly pick up one node among them as

the next cluster head. It should be noted that a cluster head

without any member is prohibited, and thus, there can exist

some single nodes that do not belong to any cluster.

Our connectivity-based clustering approach enables to un-

derstand high-level route establishment over the entire net-

works through several cluster heads used as skeleton nodes.

B. Network Hole Replacement with UAV Relays

Our network hole replacement algorithm consists of two

phases: multi-level clustering and deployment. First, we per-

form a connectivity-based k-hop clustering for all of sta-

tionary nodes based on the obtained route topology. This

captures high-level skeleton nodes that serve an important role

to connect with even farther nodes.

Once cluster heads are elected, we perform additional

clustering only for cluster heads (that are real nodes), and

vertexes (that are virtual nodes considered as candidate places

where UAVs can be deployed). Then, we obtain vertex

cluster heads and their belonging members. This second-

tier clustering offers an informative high-level connectivity

structure of how virtual nodes located at vertex positions can

deeply be associated with cluster heads, skeleton nodes in real

networks. We select the most influential vertex positions with

the highest impact on route connectivity with skeleton nodes

as the deployment positions of UAVs.

We consider three deployment cases for UAVs: 1) a vertex

that can connect one cluster head at the one end with another

at the other end within one hop, 2) a vertex to connect two

cluster heads at each end within two hops, and 3) a vertex to

connect two cluster heads at each end within three hops, as the

second case is depicted in Fig. 4(a). If two cluster heads have

any existing paths with the lower number of hops away not

through the vertexes within the designated number of hops for

each case, we no longer consider these vertexes as deployment

Algorithm 2 Deployment of UAV Relays at Network Holes

1: Input: Route topology & # of available UAVs for relay deployment

2: Output: selectedVertexesForUAVs

3: selectedVertexesForUAVs = ∅;

// Deployment case 1 to 3: multi-level clustering & deployment
4: deploymentCase = 1;

5: while (deploymentCase <= 3)
// 1st-tier clustering for all stationary nodes using k hops
// return stationary cluster heads

6: sClusterHeads = connectivity-clustering(stationaryNodes);

// 2nd-tier clustering for stationary cluster heads and all vertexes
// using deploymentCase hops
// return vertex cluster heads

7: vClusterHeads = connectivity-clustering(sClusterHeads ∪ vertexes,
deploymentCase hops);

8: Find parts of vClusterHeads connecting two sClusterHeads through;

9: Exclude ones with any existing route within deploymentCase hops;

10: Prioritize all possible vertex candidates in terms of route effectiveness;

11: Deploy all possible UAVs to the prioritized vertexes;

12: Update selectedVertexsForUAVs with them;

13: vertexes ← vertexes – selectedVertexesForUAVs;

14: stationaryNodes ← stationaryNodes ∪ selectedVertexesForUAVs;

15: deploymentCase++;

16: endwhile

17: if (any UAVs still left) then
18: Deploy remaining UAVs to vertexes with the highest # of neighbors

within k hops;
19: Update selectedVertexesForUAVs with them;
20: end if

candidates as illustrated in Fig. 4(b). This is due to the fact

that the deployment of UAVs at those positions are definitely

not a desirable choice compared to otherwise scenarios with

two cluster heads connectable only through the vertexes.

Our network hole replacement algorithm iteratively tries to

deploy all possible UAVs to the most effective vertexes. To

evaluate the route effectiveness of UAV deployment at certain

vertex locations, we probe routing performance improvement

in case of deploying UAVs at vertex candidates. We calculate

the percentage of source-to-destination pairs with no existing

path among all possible within λ hops from the vertex for

both before-deployment and after-deployment scenarios. As

the percentage difference between before and after increases,

it is reasonable to say that the effectiveness of UAV deploy-

ment increases. We prioritize all possible vertex candidates

for UAVs to be deployed in the descending order of this

effectiveness measure. UAVs are consequently deployed to

the vertexes with the highest route effectiveness.

In case that all of UAVs are not deployed at this stage yet,

we continue the above multi-level clustering and deployment

procedures by extending to the second deployment case, and

doing so up to the third deployment case. It should be noted

that once some UAVs are deployed at the selected vertexes,

we treat the UAVs as normal stationary nodes at the remaining

clustering and deployment procedures.

Even after executing over all three deployment cases, there

can still be remaining UAVs to be deployed yet. We prioritize

the remaining vertexes in the descending order according to

the number of neighbors within k hops after deploying all

possible UAVs at the prior steps, and eventually deploy all

the remaining UAVs to them.

This iterative algorithm provides a lightweight yet effec-



tive deployment decision for multiple UAVs, contributing to

significant improvement in routing performance.

V. EVALUATION

We evaluate our adaptive route recovery algorithm based on

path stitching of UAVs, named as DroneNet+ in a network of

64 stationary nodes over the RoI of 144 × 144 m2 as in Fig. 5.

We simulate a damaged network consisting of almost half (≃

53.8%) broken source-to-destination pairs with no route out of

all possible pairs in TinyOS 2.1.2 TOSSIM environment. To

model the radio propagation, a combined path-loss shadowing

model with a path-loss exponent of 3.3, a shadowing standard

deviation of 5.5 dB, a reference distance of 1 m, a power

decay of 52.1 dB, a radio noise floor of -104 dBm, a high

asymmetric link model, and a white Gaussian noise of 4 dB
in TOSSIM LinkLayerModel are used. To reflect a more

realistic interference environment, we incorporate the CPM

interference model [10] with meyer-light noise traces.

We focus on more in-depth network performance improve-

ments in a relatively small but critically damaged network

even using a small number of UAVs. The simulation results

are still valid for a large scale network under critical damage,

with a fairly larger number of UAVs. We believe that our

simulation setting does not provide qualitatively different

results, serving as a reasonable representative to effectively

show the inherent performance.

In our experiments, the total number of vertexes is 100

where m = 10, and UAVs fly at the height of 3 m. For relaying

probing packets over stationary nodes, we use three maximum

number of retransmissions.

Our validation is divided into two parts: network traversing

based on motion planning and network hole replacement

algorithms. First, we evaluate network traversing performance

of DroneNet+ in terms of complete coverage time, travel

distance, and duplicate coverage rate by varying the number of

UAVs compared to Ants [14], DroneNet [7], and a centralized

optimal solution that solves the Multiple Traveling Salesman

Problem, mTSP [15]. Second, we investigate network repair

performance of DroneNet+ in terms of end-to-end routing

cost and source-to-destination pairs with no route, as opposed

to DroneNet and an upper-bound algorithm. We quantify the

computation complexity of our iterative deployment algorithm

in terms of the number of iterations and running time.

Also, we evaluate dynamic network recovery performance as

stationary nodes become dying out over time.

A. Adaptive UAV Traversing

We explore the efficiency of our adaptive UAV traversing

algorithm, DroneNet+ against our previous DroneNet, which

does not reflect dynamic coverage progress of other UAVs

by using a fixed navigation width. The flying speed of UAVs

is assumed to be 11.1 m/s (as per Parrot AR.Drone 2.0).

The initial position of each UAV is placed at a randomly

selected vertex. We measure the complete coverage time and

the average travel distance of each individual UAV until UAVs

finish the network exploration. The initial navigation width

L = 4 is used in DroneNet+. We also quantify the duplicate
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Fig. 5. Network topology of 64 sensor nodes over RoI in a simulated
network, having almost half source-to-destination route pairs with no existing
path (where good communication links are shown for PRR ≥ 75%)
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Fig. 6. Network exploration performance comparison with respect to the
number of UAVs with the error bars of standard deviation

coverage of how much the vertexes visited by a UAV are

overlapped with those by other UAVs. We run 50 simulations

and show the average performance in results.

Regarding the complete coverage time, DroneNet+ outper-

forms Ants that does not share visited vertex information with

others. Both DroneNet and DroneNet+ reduce the network

traversing time spent for the complete coverage over RoI

in Fig. 6(a). This implies that sharing previous trajectory

information with other UAVs is essential to reduce duplicated

exploration. Furthermore, DroneNet+ lessens the network

traversing time with up to 14.5% compared to DroneNet.

This means that the adaptive control of navigation width L
depending on the coverage progress of other UAVs plays an

important role on navigation efficiency by reducing the dupli-

cate coverage. Moreover, to deeply understand the traversing

performance achievable by a practical algorithm, we find

a theoretical limit of traversing time by solving an mTSP,

which offers an optimal solution in a centralized manner.
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Although our algorithm is a heuristic distributed one, its

resulting performance has a relatively similar tendency with a

theoretical bound of mTSP as the number of UAVs increases.

We measure travel distance and duplicate coverage in

Fig. 6(b). Although DroneNet+ has a slightly lower travel

distance than DroneNet, both motion planning algorithms

reduce travel distance as the number of UAVs increases and

show the similar performance on navigation efficiency in the

space domain. As for duplicate coverage, DroneNet+ reduces

the duplicate coverage up to 49.3% compared to DroneNet

thanks to the adaptive navigation control. This implies that

even intermittent duplicate coverage status that can be only

shared with other UAVs within communication range should

be considered as a valuable information to change the navi-

gation pattern of UAVs.

B. Network Recovery

We investigate network recovery performance of our al-

gorithm to measure how the selection of UAV deployment

positions reduces the number of network holes and improves

routing cost compared to other counterpart algorithms.

We compare DroneNet+ with DroneNet and an upper

bound algorithm. DroneNet [7] deploys UAVs to the loca-

tions where the local connectivity with neighboring stationary

nodes is the worst by considering all the possible combina-

tions of deployment candidate positions through an optimiza-

tion methodology. We devise an upper bound algorithm, Sub-

Optimized scheme that makes a recursive attempt to check all

possible subsequent deployment positions given the past UAV

deployments in a brute-force manner. This scheme makes a

series of UAV deployment decisions that can lead to the lowest

network hole fraction and the most effective route repair.

In our experiments, routing cost is measured as the sum of

the expected number of transmissions over routing hops. As

the maximum hop distance of relaying path-probing packet,

n increases, the accuracy of correctly inferred links among

ground-truth links also increases. The required communica-

tion overhead of path-probing broadcast, on the other hand,

becomes accordingly larger. As a reasonable trade-off point,

n = 1 is selected in our experiments where 92.55% of

links are correctly inferred, as demonstrated in Fig. 7. The

parameters of k = 1 on connectivity-based clustering and

λ = 1 on network hole replacement are tuned to be used in

our simulations. We show the average performance over 10

independent simulations.
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Fig. 8. Network recovery performance comparison with other counterpart
algorithms in terms of the end-to-end routing cost

We compare DroneNet+ against DroneNet and a Sub-

Optimized upper bound algorithm in a damaged network

where 53.8% of source-to-destination routing pairs have no

existing path in Fig. 8. As the cumulative distributions of

routing cost are shown in Fig. 8(a), DroneNet+ outperforms

DroneNet, while having the lower routing cost. Also, our

DroneNet+ based on a relatively lightweight iterative ap-

proach works closely to the Sub-Optimized upper bound

algorithm that suffers from high computation complexity. As

measured in Fig. 8(b), DroneNet leads to the network hole

percentage of 31.7%, whereas DroneNet+ further reduces the

percentage down to 19.3%, with a factor of 1.64.

C. Computation Complexity

We measure computation complexity in terms of two met-

rics of the number of computation iterations and running time

in Fig. 9. As the number of UAVs increases beyond two UAV

deployment, our algorithm computes desirable deployment

decisions within 7500 iterations in Fig. 9(a). This means that

our iterative deployment algorithm is scalable even with a

larger number of UAVs for the deployment problem.

We quantify running time and compare DroneNet+ with

DroneNet. As in Fig. 9(b), our DroneNet+ spends a little time

to compute the solution within seconds, whereas DroneNet

takes much more time to solve its optimization problem. This

implies that our algorithm provides a lightweight practical

approach, making it feasible with a larger number of UAVs.



0

1000

2000

3000

4000

5000

6000

7000

8000

1 2 3 4 5 6 7 8 9 10

(a) # of iterations for deployment in
DroneNet+ with respect to # of UAVs

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5

DroneNet

DroneNet+

(b) Running time with respect to # of
UAVs for DroneNet vs. DroneNet+

Fig. 9. Computation complexity in terms of # of computation iterations and
running time

0

10

20

30

40

50

60

70

80

90

100

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Stationary Nodes

Before Deployment

DroneNet+ (5 UAVs)

Fig. 10. Dynamic network recovery performance as stationary nodes become
dying out over time

D. Dynamic Performance

We examine dynamic network recovery performance of

DroneNet+ in a gradual network breakdown scenario. We

use a simulated network of 100 stationary nodes with the

initial power budget of 2.5 W over the RoI of 144 × 144

m2. It is assumed that the radio transmission and reception

drive the current of 17.4 mA and 19.7 mA, respectively, with

the external power supply of 3.3 V, according to the MicaZ

mote specification. If a node consumes all the remaining

power, we let it inactive for any network operation so that

the network can get disconnected gradually over time. At

each round, 30 source-to-destination pairs randomly chosen

perform data transmission along their own shortest path. As

in Fig. 10, as the number of active stationary nodes even grad-

ually decreases, the network gets dramatically disconnected,

significantly breaking down existing routes. If DroneNet+ is

allowed to apply its adaptive route recovery procedure using

5 UAVs at each round, the speed of the network breakdown

becomes much slower. Although the effective number of

nodes still decreases even after deploying 5 UAV relays, our

adaptive UAV deployment keeps reorganizing their effective

deployment positions at each round, avoiding substantial route

outages as much as possible.

VI. CONCLUSION

We have presented an adaptive route recovery algorithm

based on topology discovery and network hole replacement

with UAV relays. To extract the global route topology of a

terrestrial ad-hoc network in post-disaster scenarios, we let

UAVs traverse the network according to their own distributed

motion planning, while stitching partial local paths collected

from route probing information by UAVs.

We have incorporated a computationally lightweight UAV

deployment algorithm to replace network holes with UAV

relays. To capture the inherent global route connectivity

throughout the network, we have applied a connectivity-

based clustering algorithm to terrestrial nodes and all possible

deployment vertex candidates. We iteratively deploy a UAV

or several UAVs at some selected vertex location that would

lead to the most significant routing enhancement after its

deployment.

Our experiments demonstrate that our scheme has sig-

nificantly improved routing performance and computation

complexity by exploiting the efficiency in motion planning

and UAV deployment compared to a baseline counterpart and

a sub-optimal brute-force algorithm.

For future work, we may interleave the route topology

discovery with a provisional UAV deployment, achieving

higher efficiency and suppressing unnecessary discovery. It

would be interesting to consider more practical aspects such as

battery recharging of UAVs to reflect in the motion planning of

UAVs. Also, we could validate our algorithms in a real-world

testbed consisting of terrestrial sensors and aerial drones.
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