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ABSTRACT Distributed deep learning architecture can achieve scalable learning and inference capability
at resource-constrained edge devices. Although the parallelization-based approaches have actively been
investigated in the edge computing context, they are not designed for the devices that are usually wireless and
mobile, causing the substantial link and device failure issue. We propose a semi-distributed deep learning
architecture, StitchNet, based on model parallelism for volatile wireless edge networks. Our algorithm first
classifies a set of effective neurons with a substantial impact on their connected neurons across layers. Then,
an opportunistic neuron assignment is employed to ensure the full forward and backward propagation paths
by stitching the subsets of the model across the devices with path redundancy via neuron cloning for securing
high resilience to network and device uncertainty. Simulation-based experiments demonstrate that StitchNet
has achieved high inference quality on visual classification tasks even under the volatile lossy network
environment, by making edge devices collaboratively find and stitch their in-ward and out-ward edge paths
with a reasonable communication overhead.

INDEX TERMS On-device AI, distributed learning, model parallelism, edge computing.

I. INTRODUCTION
Due to the great advances in deep learning over the last
decade particularly in several domains such as image clas-
sification [1], [2], natural language processing [3], machine
translation [4] to reinforcement learning [5], the deep
learning-based approach has been regarded as a popular sys-
tem design methodology. Due to its outstanding general-
ization property acquired by the increasing model size and
the huge amount of training data, complicated algorithms or
computer systems can be built relatively easily and quickly
without extracting the underlying features in a hand-crafted
manner.

The associate editor coordinating the review of this manuscript and

approving it for publication was Hosam El-Ocla .

As the edge computing technology allows to bring com-
putation and data storage to the edge side, such as mobile
phones, sensors or wearable devices, the problem of scal-
able deep learning on distributed infrastructures has recently
been investigated [6], [7]. Traditional centralized deep learn-
ing suffers from large communication overhead and privacy
breaches caused by uploading raw data from the user side to
a central computation server. Distributed system architecture
can offer a practically feasible way to achieve scalable learn-
ing and inference capability at resource-constrained edge
devices.

In order to make distributed deep learning available at the
edge, the concept of collaborative learning, also called feder-
ated learning, has been proposed [8], [9], [10]. Parallelizing
learning and inference tasks into multiple devices is classified
into two categories: data parallelism and model parallelism.
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In data parallelism, each of devices trains the same replicated
learning model, while using a different mini-batch training
data from itself, and aggregates the gradients from all replicas
to update the model parameters [2]. Model parallelism, on the
other hand, splits the model into its sub-parts across separate
devices for scalability, while using the same training data
batch at devices [4], [11], [12], [13], [14], [15], [16].

Particularly in the on-device context, several distributed
learning approaches such as Federated Split Learning [17]
and FedMask [18] have been proposed. FedMask [18] is a
federated learning-based approach [8] withmobile devices by
considering both communication and computation efficiency
based on efficient sparse binary masking. Federated Split
Learning (FSL) [17] is a hybrid learning architecture that
combines Federated Learning [8] and Split Learning [19]
rather with the focus of privacy awareness.

Although the distributed deep learning approaches via
model parallelism suggest a desirable paradigm for scal-
able learning and inference under the memory constrained
edge environments, they explicitly or implicitly assume a
lossless network in which cross-device communication is
reliable without any lossy link failures, or by relying on a
dedicated transport layer. In general, however, most of edge
devices become mobile and more resource-constrained with
a lightweight transport layer. Designing a distributed learning
architecture for volatile wireless networked devices is an even
more challenging problem.

In this paper, we first propose a semi-distributed deep
learning architecture, StitchNet, based on model parallelism
for volatile wireless edge networks. In a lossy network formed
by wireless edge devices, a device coordinator, which is
selected among edge devices, performs model partitioning.
A different subset of neurons at layers is assigned to the
devices, depending on device-to-device link uncertainty and
workload at the device. This assignment is made by taking
into account the requirement that the forward and backward
passes should be established by stitching the subsets of the
model across the network, while minimizing the intermediate
edge loss in the middle of the learning paths.

Once a deep neural network is partitioned into several sub-
models, a sub-model is assigned to its dedicated edge device
considering link quality between devices. Further, in order
to fight against critical or permanent device failures, Stitch-
Net performs a local rearrangement via neuron cloning with
consideration of the impact of neurons, borrowing a concept
from the pruning and sparsification [20]. This ensures to
attain a complete learning path across layers even under the
unreliable networks.

Our approach proposes a new on-device model par-
titioning technique. It exploits opportunistic computation
through some of redundant neuron-to-device assignments to
compensate for the learning path losses caused by the lossy
device-to-device link failures. StitchNet is capable of captur-
ing all possible learning update information on some impor-
tant neurons from multiple devices, along both the forward
and backward paths.

FIGURE 1. High-level description of our proposed distributed on-device
learning architecture, StitchNet, where the colored circle represents the
neuron that are allocated to and computed by their corresponding device
with the same color, where gray colored connection is not used while
learning.

The main contributions of this work can be summarized as
follows:
• We present a semi-distributed deep learning architecture
based on model parallelism, which is resilient against
a volatile lossy network consisting of wireless edge
devices.

• We offer a novel neural network partitioning scheme
called Mix-Mapped partitioning that allows to form an
efficient learning architecture with decent communica-
tion cost and stable accuracy performance.

• We suggest an opportunistic neuron assignment method
that establishes the full forward and backward propa-
gation paths by stitching a subset of the model across
the network with path redundancy via neuron cloning,
fighting against the uncertainty over the otherwise frag-
ile learning path.

This paper is organized as follows: After describing the
system model in Sec. II, we present our model partitioning
scheme in Sec. III and our model recovery scheme in Sec. IV.
We validate this work with various real-world datasets in
Sec. V and then conclude our work in Sec. VI.

II. SYSTEM MODEL
We consider a new way of implementing a distributed deep
learning model on edge devices based on model parallelism,
under the wireless lossy device-to-device link environments,
as illustrated in Fig. 1. In volatile wireless networks, the
recent state-of-the-art distributed deep learning approaches
based on model parallelism may not work any longer. Under
the link or/and device failure situations, the intermediate
computation result performed by one device may be likely
lost at the other device in charge of its following computation
in the middle of the learning process.

To tackle the volatility of distributed neural network archi-
tecture caused by that of link connectivity, we apply the
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FIGURE 2. Virtualization of neurons across layers, placed at a physical
neuron space and a virtual neuron space in StitchNet. In case of device
malfunction (e.g., the green device), the neurons under the primary
device are reallocated to one or more secondary devices.

concept of virtualization to neurons across layers, which are
supposed to be computed by physical devices. The neurons
can be defined the ones in two spaces: physical neuron space
and virtual neuron space, as shown in Fig. 2. A neuron
belongs to both spaces, and can be allocated to a physical
device through each space.

The physical device at one space may well be different
from that at the other space. In reality, such as in the lossy
network scenario, in case of the temporary (e.g., due to link
loss) or permanent (e.g., due to device loss) failure on the pri-
mary device, a different physical device as the secondary role
needs to seamlessly take over the interrupted task. Incorpo-
rating this functionality can greatly help a distributed learning
architecture to sustain the learning and inference capability.

In this work, we assume that edge devices are equipped
with a wireless radio interface (e.g., 802.11 WiFi, or LTE/5G
cellular), and are deployed in a stationary environment where
they can form a connected edge network. We consider a sce-
nario that multiple edge devices are connected and cooperate
to decide the status of the environment or persons such as
patients in hospital. The information can be gathered from
edge devices with sensors, while training a model using
newly collected data. For this work, it is assumed that the
devices involved in learning process are credible so that
there is no privacy issue on sharing information to other
devices.

A communication-centric device that has the highest con-
nectivity to the other devices is selected as a device coordina-
tor. The device coordinator manages the model partitioning
initially once or in case of critical loss or device failures.
From the perspective of task computation, the device coordi-
nator initiates the first input layer, aggregates and distributes
the intermediate results from one device to the other, and
processes the last layer. In this work, it is assumed that
all of the edge devices including the device coordinator are
homogeneous.

To solve the problem of model partitioning in a lossy
wireless network, we introduce a dynamic neuron-to-device
mappingmechanism called StitchNet, based on the concept of
physical and virtual neuron spaces, with three main phases:

1) Mix-Mapped partitioning; 2) path construction; and
3) model recovery via neuron cloning as illustrated in Fig. 1.

III. MODEL PARTITIONING
We incorporate a model partitioning on a specific neural net-
work architecture by taking into account the characteristics
of distributed learning. In wireless network environments,
since the results may be lost due to intermittent connection,
constructing a stable learning path is crucial to quickly boot
up the learning procedure. However, there may be a concern
that pursuing accuracy alone can increase communication
cost in the network aspect while training. Therefore, we seek a
simple yet effective way of partitioning a deep learningmodel
over edge devices.

We introduce a new neural network partitioning scheme
calledMix-Mapped partitioning, in which a part of the model
contributes to increasing the learning performance and the
other part benefits reducing communication cost based on
device connectivity.

Beyond it, in order to minimize intermittent disconnection
during training procedure, a device coordinator with cen-
tral connectivity is needed, and also direct communication
between devices should be able to make the learning path
connected, thereby creating an alternative path to ensure a
more effective and stable learning path.

We conduct a neuron-based model partitioning in which
a single neuron is considered as a base unit for splitting
the model. A layer consists of a number of neurons, and a
neuron is connected to others neurons located at its preceding
and following layers. As necessary notations on neurons and
layers, hnm represents the mth neuron at the nth layer, with
its weight values in matrix Hn. For example, the second
hidden layer comprises neurons h21, h

2
2, and h

2
3, with its weight

matrixH2; and w21 inH2 indicates a weight value of the edge
from neuron h12 in the first hidden layer to neuron h21 in the
second hidden layer.

A. MIX-MAPPED PARTITIONING
During the training epochs in a neural network model, the
weight values continue to be adjusted to minimize the loss
value at the output layer. Each layer plays a key role in passing
out the intermediate computation results to a following layer,
and losing a substantial portion of the layer causes a huge risk,
particularly in wireless networks. Depending on a different
model partitioning as shown in Fig. 3, the lost portion of
the layer becomes very different. For a model that places
all of the neurons at each layer into one single device, the
potential lost portion of the layer would be very high. On the
other hand, if the neurons are fairly distributed across layers
to a single device, the potential loss risk would be marginal
and it may be possible to have the ongoing training almost
intact.

Tomake a number of devices share the learning results with
effective communication, we use the broadcast communica-
tion to pass the result into all possible connectable devices.
In the vertical partitioning model as shown in Fig. 3(a), only
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FIGURE 3. Different model partitioning cases where a circle denotes a
neuron, marked with a different color on each device.

one communication to one single device in charge of the next
layer is sufficient to send the computed result to the next layer.
In the horizontal partitioning as shown in Fig. 3(b), on the
other hand, K × (K − 1) time communications are required
whereK denotes the number of devices in charge of one layer.
The cost of the horizontal model will increase immensely as
the number of devices increases.

Our Mix-Mapped partitioning model leverages the advan-
tages of both the vertical model (as in 3(a)) and the horizontal
model (as in 3(b)) for the lower communication cost and the
stable accuracy performance. To amplify the viable horizontal
learning paths, several devices with higher connectivity are
allocated for the horizontal learning paths, by finding out an
effective set of neuron-to-device mappings on the physical
and virtual neuron space, as previously shown in Fig. 2.
Some other devices with lower connectivity are allocated
for the vertical learning paths so that they can be located
in the consecutive layers as nearby as possible. As the low-
power wireless interface suitable for edge networks tends to
have volatile asymmetric link behaviors [21], the bidirec-
tional packet reception ratio (PRR) is adopted to quantify
the device-to-device connectivity. The multiplication of the
bi-directional PRR values is calculated as a connectivity mea-
sure between two adjacent devices. Once the bidirectional

FIGURE 4. Aggregation and distribution of intermediate computation
results among devices.

PRRs are calculated on average for all possible link pairs,
we allocate a group of devices that has their own PRR value
higher than the median of the calculated PRRs for all of the
links to the horizontal device group, and the remainder to the
vertical device group, as shown in Fig. 3(c).

B. LEARNING PATH CONSTRUCTION WITH DEVICE
COORDINATION
1) DEVICE COORDINATION WITH PARTIAL UPDATES
StitchNet performs a device coordination for participating
devices. A device can be elected as the device coordinator
voluntarily or by election depending on its connectivity to
other devices. If a device want to declare itself as the device
coordinator, the device coordinator can initiate the model
partitioning procedure. Otherwise, the edge devices located
within the radio range can elect a cluster head among them,
as the device coordinator. Since the problem of electing a
cluster head has extensively been investigated in the wireless
sensor network community [22], any mature election algo-
rithm can be applied with our model partitioning, depending
on a different design requirement, such as energy consump-
tion, node type, and mobility.

Once a model is partitioned, the device coordinator ini-
tiates the computation from the input layer, and passes out
its result to the devices that are in charge of the neurons
belonging to its following layer via path stitching. In case
of a link failure from the device coordinator to a device,
or vice versa, we let it happen. We do not make up for the
transmission failure, such as via retransmission.

The device coordinator operates within its own timeslot
without synchronizing with other devices. Since it manages
the computation aggregation and distribution among devices
from one layer to the other, it sends and receives the interme-
diate results within a fixed timeslot. If some expected results
are not received by the end of the expected timeslot, the
device coordinator proceeds without any make-up with the
problematic device, as shown in Fig. 4.

If a device that does not receive the expected result, it uses
the result of the device itself for its subsequent operations on
both forward and backward passes. By utilizing the device
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FIGURE 5. Path construction between devices, selecting the path with
more high connectivity. A set of devices take in charge of certain neurons
across the layers in a neural network, where connectivity between
devices varies.

coordinator and partial result update, each device can update
their weights more frequently using the results that could be
lost under wireless networks, so that the model can converge
quickly.

2) PATH CONSTRUCTION
To improve accuracy further, a device not only passes out
the results to the device coordinator, but also uses device-to-
device communication to use as many learning paths as possi-
ble. As shown in Fig. 5, if there is a higher probability that the
yellow colored device receives the intermediate results from
its nearby devices, we directly use the alternative device-to-
device path rather than through the coordinator.

Although the device coordinator plays some critical
roles in conducting partitioning and maintaining the model
parameters, our framework offers a way for edge devices
to keep performing learning process even if the device
coordinator is temporarily disconnected under the volatile
lossy wireless transmission, operating in a semi-distributed
fashion.

IV. MODEL RECOVERY
Once a neural network model is partitioned into devices
based on the mix-mapped partitioning model, we perform
a training procedure towards secure and high performance,
while preserving communication cost. We want to make the
model cope with uncertainty via the volatile learning paths,
caused by dynamic factors such as device failures in a lossy
wireless network.

We evaluate how much the learning can be deteriorated
by a device failure, and then perform a neuron-to-device
rearrangement procedure via neuron cloning. By reflecting
the link dynamics in the learning model, the model can com-
pensate for critical link losses at certain devices. Depending
on whether the sub-part of the model are close to horizontal
or vertical partitioning, we perform cloning the impacted
neurons at another neighboring device with the increased
computation overhead. It should be noted that our model
recovery system occurs when the device has failed for a long
time. Model recovery is activated to cope with the permanent

loss of neurons when physical device is not available anymore
due to multiple reasons.

A. LOCAL REARRANGEMENT VIA NEURON CLONING
Even though a steady-state stable performance is reached
via priority-based partitioning, some partial link or/and
device breakdowns, which frequently occur in a real-world
network, can extensively degrade the learning and inference
quality.

We address this problem with a local rearrangement via
neuron cloning. If the device coordinator does not receive any
update from a specific device continuously for a certain fixed
amount of time, the device coordinator attempts to locally
rearrange and clone the neurons that were previously assigned
to the device under failure to one or more other devices
randomly selected among the available devices, as shown
in Fig. 2.

According to our Mix-Mapped scheme, the horizontally
partitioned devices play a crucial role to accommodate accu-
racy by stitching the learning path. If one of those devices
fails, the accuracy of the learning model would severely be
affected. Therefore, to prevent the loss of accuracy, we clone
the entire neurons from the failed devices, and then assign
them to available devices.

Once a new device is selected, the recently recorded weight
values on the neurons are loaded from the device coordinator.
Although the weight values stored at the device coordinator
may have been outdated, they still contain some historically
crucial information on the edge weight, and can help to make
a quick and stable convergence.

B. NEURON CLONING WITH PRIORITY
Although cloning the entire neurons from the failed devices
to backup devices would indeed be helpful to keep the accu-
racy, it is important to evaluate the effect of a single neuron
or a group of neurons on learning efficacy. In our Mix-
Mapped partitioningmodel, the vertical part plays a relatively
insignificant role in learning procedure; rather it contributes
to reducing communication costs by processing the related
neurons within the same device. Instead of cloning the entire
neurons and putting a whole burden of computational load at
the device, we selectively clone neurons by their importance
to maintain accuracy without making backup devices over-
loaded with the additional computational load.

We calculate the importance measure of neurons by taking
into account the weight values. We borrow an idea from
a previous work [20] that uses the absolute weight value
to quantify the strength of an edge connection from one
neuron to another. We calculate the importance score with
L2-normalization, which used in pruning to rank filters or
neurons on the neural network. Then, we pick up the top T
percentage of neurons from malfunctioning devices based on
the importance score. The parameter of T can be determined
by the balance between training performance and computa-
tional workload.
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FIGURE 6. Simulated network topology in which one device coordinator
and 8 devices are deployed over 40 × 40 m2.

Our neuron cloning takes place during training and testing
procedures. Once the importance score-based cloning proce-
dure is executed, the rest of training proceeds to fine-tune the
weight parameters until convergence. The neuron-to-device
arrangement is maintained until the end of learning. The
device coordinator receives the converged weight values from
participating devices and manages the information in the
virtual neuron space in preparation for potential link and
device failures in the near future.

V. EVALUATION
We implemented a distributed neural network model from
scratch using Python 3.7, in order to keep track of device-wise
computation and networking along the forward and backward
learning paths. We used the MNIST dataset with the hand-
written digits, EMNIST-Letters dataset with the handwritten
characters, and the Fashion-MNIST dataset with the images
of fashion products to validate our proposed algorithm in
a simulated network topology over 40 × 40 m2, with an
edge network of one device coordinator device and 9 edge
devices including device coordinator, as shown in Fig. 6.
We mainly used Fashion-MNIST dataset to validate the per-
formance of proposed scheme. To stress out the main model
partitioning performance over lossy device-to-device links,
the edge devices are assumed to be homogeneous in the
computation, memory, and communication resource in the
experiments.

The wireless radio communication is simulated with
a path-loss shadowing model [23], which captures the
core properties of wireless communication. The larger the
path-loss exponent (PLE) is, the more volatile the wireless
network becomes. A PLE value of 3.9, which is usually
used for the indoor environment, is selected, unless otherwise
noted. The average PRR is 49.0%where the PRR is measured
by counting the delivered packet among 50 packets, within
the communication range. With a separate experiment in
order to select a target volatile network topology, we have

FIGURE 7. Performance of accuracy and communication cost with respect
to the number of layers at each submodel with the Fashion-MNIST
dataset.

periodically generated packets between wireless links and
have taken the average packet reception rate as PRR for a spe-
cific link. Assuming 802.11 Wi-Fi interface to be equipped
at edge devices, the maximum transmission time of 100 ms
between devices is used for quantifying the networking time,
as a worst-case network delay.

We use a basic deep neural network (DNN) architecture
where the number of hidden layers is chosen to be 4 with a
width of 64 across all the layers, which are feasible depth
and width at the edge device level. We use Xavier initial-
ization [24] as the weight initializer, Adam optimizer as the
optimizer, and ReLU as the activation function. The datasets
are split to 60,000 training samples and 10,000 testing
samples for the MNIST and Fashion-MNIST datasets, and
88,800 training samples and 14,800 testing samples for
EMNIST-Letters dataset. A batch size of 100 is used for
all datasets. We ran 10 different runs for each experiment
and report the average performance on the test set. It should
be noted that both training and testing have been conducted
under the link or device failure environments between devices
and the device coordinator without using any retransmission
or any transport layer support.

A. EFFECTS OF MIX-MAPPED PARTITIONING
1) ACCURACY AND COMMUNICATION COST
We examine how model partitioning affects training pro-
cess and communication cost in volatile wireless network
environments. We compare with a state-of-the-art model
parallelism [4] called Vertical partitioning and Horizontal
partitioning. The Vertical makes each device in charge of the
neurons from a single layer while Horizontal is fairly dis-
tributed across layers. We measured broadcast transmission
cost and accuracy of the partitionedmodels in Fig. 7. In Fig. 7,
Vertical represented by 1 on the x-axis shows very poor per-
formancewith only 33%. This implies that assigning all of the
neurons at a single layer to very few devices is very vulnerable
to the intermittent wireless lossy network environment. This
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FIGURE 8. Effect of the link failure on the prediction quality as the link
volatility gets worse.

is because the Vertical neuron assignment critically breaks
down the crucial connection along the forward and backward
passes in deep neural networks. The accuracy of the model
increases from Vertical to Horizontal represented by 4 and
randomon the x-axis. Since there aremany neurons, a random
distribution of the neurons has caused every device to handle
some part of neurons at each layer, leading to the average
number of layers value of 4. Although the number of neurons
of each layer assigned to the device may vary, the Random
partitioning model shows similar performance with Horizon-
tal model.

However, the communication cost increases accordingly
because devices in charge of all layers need communication.
Therefore, it is necessary to find a balance between accu-
racy and communication cost. Mix-Mapped shows higher
and stable accuracy with lower communication cost com-
pare to 2.5 which has same average number of layer. This
implies that ourMix-Mapped partitioning is a reasonable way
to reduce communication costs while stably obtaining high
learning accuracy.

We investigate the benefit of ourMix-Mapped partitioning
varying the PLE in the same network topology. As shown in
Fig. 8, as the path-loss exponent increase from 3.5 to 4.0, the

FIGURE 9. Accuracy and loss performance among different partitioning
models using Fashion-MNIST datset.

average PRR value between communicating devices drops
from 0.91 down to 0.65. As the wireless network environment
gets more lossy, Mix-Mapped still holds a high accuracy of
85.76% under the path-loss exponent of 3.9, measured at
epoch 20.
Mix-Mapped showed higher accuracy at epoch 1 shown in

Fig. 8(a) as the connection getting lossy. This result indicates
that our partitioning model quickly boots up the learning pro-
cedure in volatile network environments. The performance at
epoch 20 the accuracy eventually converges to be similar to
that of the randommodel as shown in Fig. 8(b), but consumes
lower communication cost compared to the random model.
Mix-Mapped can decrease the convergence speed of learning
with reasonable communication cost.

We compare the Mix-Mapped partitioning with the
together with Random partitioning and Vertical, while fixing
the random seed. As shown in Fig. 9, an the training epoch
goes on, both algorithms get improved the accuracy on the test
set, while their losses on the training set drops. Mix-Mapped
partitioning works better than the Random and Vertical parti-
tioning algorithm.

In order to see how effective the device mapping is in
the Mix-Mapped model, we compared our mapping method
with randomly allocated (Mix-Mapped (Random Mapping))
and reversed order (Mix-Mapped (Reverse Mapping)) alloca-
tion, where the devices with high connectivity are vertically
assigned, and the devices with low connectivity are hori-
zontally assigned. Our mapping strategy shows the highest
accuracy over training epochs in Fig. 10. It indicates that
assigning horizontal portion to device with high connectiv-
ity achieves reliable performance. This is because the for-
ward and backward propagation in the horizontal part of the
model pass by forming strong learning paths with a high
probability.

2) DEVICE COORDINATOR AND PATH CONSTRUCTION
We examine how device coordinator affect training accuracy.
Fig. 11 shows that our calculation based selected device
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FIGURE 10. Performance of accuracy with different device allocation on
the Fashion-MNIST dataset.

FIGURE 11. Accuracy performance of calculated Device Coordinator and
randomly selected Device Coordinator, with respect to epoch.

coordinator (Mix-Mapped) shows better performance than
the one selected randomly. This result indicates that if
the device coordinator is effectively selected, the coordi-
nator serves to aggregate and send results between lay-
ers, increasing the probability that the device receives
results.

We also investigated the effect of partial update, by zero
padding the failed delivery values, or use its own previous
layer value as an input. In the Fig. 12, the result is not
calculated if the result is not received from previous lay-
ers, and accordingly, the result of the continuous layer is
not calculated. Updating partial results is crucial. Moreover,
when using subpath, it shows fast convergence and better
performance relative to using path that goes through Device
Coordinator, when there is and is no partial update. When
comparing results of Subpath w/ update and Subpath w/o
update), we can teel the using partial update is very crucial,
and learning can not happen when there is no partial update
in lossy environment.

FIGURE 12. Comparison of partial updates and no-updates on
Fashion-MNIST datset.

FIGURE 13. Average PRR value during full forward and backward pass.

FIGURE 14. Dynamic accuracy and loss performance of Mix-Mapped with
path of direct, Device Coordinator, and subpath communication with
respect to epoch.

To validate the effect of subpath construction, we inves-
tigate the case where there is no subpath using only the
device coordinator represented as Coordinator in Fig. 14
and Fig. 13, and the case of using only the direct com-
munication (Direct) without using the device coordinator.
As shown in Fig. 13, the communication success rate of
the device to the consecutive layer is highest when using
the subpath. The average PRR values for Subpath for every

VOLUME 10, 2022 110623



J. Lee et al.: StitchNet: Distributed On-Device Model Partitioning Over Edge Devices

FIGURE 15. Accuracy over epochs when PLE value is changed from 3.7 to
3.9 at accuracy of 0.75.

layers is 0.81, while Direct shows only 0.64. By utilizing
both the direct communication and the coordinator, the result
can be sent through the coordinator when direct communi-
cation is volatile, allowing the devices to receive and update
results more frequently increasing accuracy in Fig. 14. The
device also capable of direct communication to other devices
not through the coordinator, so communication costs can be
saved.

B. MODEL RECOVERY
To observe how theMix-Mapped model recovers, we run two
cases: when the network environment was changed during the
training and when during the testing.

1) LINK DYNAMICS DURING TRAINING
We intentionally changed in a network environment with a
PLE from 3.5 to 3.9 when the accuracy of training models
reached 0.75 during training. As shown in Fig. 15, Mix-
Mapped model recovers faster than the Random partitioned
model, and it converges eventually approximately as the train-
ing progresses. Therefore, theMix-Mapped model cope with
frequently changing wireless communication characteristics
which can help to progress the learning faster.

2) EFFECT OF SEVERE DEVICE FAILURES DURING TESTING
To examine the effect of severe device failures, we make a
device one-by-one inactive with the order from the weakest
to the strongest connectivity to the device coordinator and
vice versa, at testing phase. The neuron cloning is applied for
both partitionedmodels as shown in Fig. 16(a) and Fig. 16(b).
It should be noted that both models did not reflect the device
failure situation, and the performance is measured during the
test phase after the failure-free training phase is over. Each
partitioned model is trained with 9 devices including a device
coordinator, and the test accuracy performance is measured
with respect to the number of failed devices. In Fig. 16, when
a device with the weakest connectivity was first removed,
some parts of neurons from the affected device are cloned

FIGURE 16. Performance with respect to the number of failed devices
over the failure severity level, on the Fashion-MNIST dataset.

based on the priority. The parameter of T = 25 is used, where
top 25% of malfunctioning neurons are cloned. In Fig. 16,
our Mix-Mapped shows better performance than Random
since our Mix-Mapped structure provides devices to hold
more neurons from one layer since the devices with weak
connectivity are aligned in a vertical manner. For this reason,
the horizontal device can smoothly deliver many neurons to
next layer within itself and has stably connected with devices.
On the other hand, Random only get some portion of layers
since they are all aligned in a semi-horizontal shape. If there
are only one device left, the performance of Mix-Mapped
is 28.30%, whereas Random reached at 10.17%, resulting in
almost 20% gap between two models. In Fig. 16(b), although
our Mix-Mapped appears to have a lower performance than
Random, the gap between two models is not noticeable, and
the maximum gap is only 10.96% in case of the four failed
device scenario.

C. NETWORKING AND COMPUTATION OVERHEAD
We measure transmission cost in StitchNet for sharing the
intermediate computation results between devices in terms
of the number of participating edge devices. As a default
experiment setting, 9 devices including a device coordinator
are used in Fig. 17. We quantify the number of transmitted
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FIGURE 17. Networking and computation overhead when the number of
devices varies using the Fashion-MNIST dataset.

packets, as in Fig. 17(a). Asmore edge devices participate in a
distributed learning model, the number of transmitted packets
increases accordingly due to the fact that the computation
capacity is shared by the network overhead among devices.
This shows an interesting trade-off between computation and
networking.

We also quantify both networking and computation over-
head in time, by running StitchNet over different platforms:
Google Colab with GPU, desktop PC with Intel Core i7-
6700 CPU and 8 GB RAM, and NVIDIA Jetson Nano 4GB,
as shown in Fig. 17(b). By constructing a set of models with
each different weight size at a device, we analyticallymeasure
the running time at different devices under the same experi-
mental condition. It is an expected result that a Google Colab
cloud server with a strong computation power takes only a
few hundreds of milliseconds for computation, whereas the
data upload takes even longer than the computation time
instead.

If only the edge devices, such as Jetson Nano are used,
our StitchNet makes a deep learning model still feasible
even at the computation and memory constrained devices.
If only one device runs the model by processing all of
the neurons, e.g., at the device coordinator itself, it takes
huge amount of time as expected. However, as more devices
become available for distributed learning, the neurons can
be distributed over more devices, making the computation
job quickly finished. In return, the distributed model needs
to share the intermediate computation results among devices
for collaborative learning, increasing the communication
overhead.

Further, we investigate the effect of different number of
edge devices on performance in terms of per-device memory
usage and accuracy. We measure the memory usage at a
single device by using the Python system function. When
only one edge device is used, the device coordinator takes
over the whole computation, and thus, there is no network
communication or network failure, which can be considered
as the ideal case. In Fig. 17(c), it is obvious that the per-device
memory usage decreases as more edge devices are involved
in the computation, while the accuracy has sustained with
only 2.24% dropped, compared to the ideal single device
case. This result implies that our StitchNet offers a sta-
ble learning structure ensuring sufficient performance with
smaller memory usage at the edge, bymaking even wirelessly
connected computation resources stitched together in an effi-
cient manner.

D. PERFORMANCE IN DIFFERENT DATASETS
We investigated how our Mix-Mapped scheme performs
across different datasets, using Fashion-MNIST, MNIST, and
E-MNIST, with respect to different size of the deep learning
model in Fig. 18. In Fig. 18(a), we quantified the accuracy
using the model size of 64 neurons, while being trained for
20 epochs and tested 100 times for the same model. The
accuracy on the MNIST dataset was the highest since it
requires relatively easier tasks than the other datasets for
a model to serve. Using the E-MNIST dataset, our model
showed the lowest performance since it consists of harder
tasks with 26 categories. In Fig. 18(b), as the number of
neurons increases, the overall accuracy improves up to 96%
on MNIST, 87% on Fashion-MNIST, and 85% on E-MNIST
using a model size of 128 neurons. This result indicates
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FIGURE 18. Accuracy over different dataset and then number of neurons
per layer.

that ourMix-Mapped scheme with learning path construction
offers generally stable performance even under wireless lossy
links.

VI. CONCLUSION
We have presented a new (semi-) distributed learning
framework that can operate under volatile wireless net-
work environments. By exploiting some key components of
device cohesion and neuron cloning, our proposed Stitch-
Net architecture makes a distributed deep learning feasible
at resource-constrained edge devices, while achieving high
prediction quality with resilience to dynamic changes.

For future work, it would be interesting to devise a device
coordinator-less model partitioning method that can locally
aggregate and distribute partial information, considering het-
erogeneous edge devices with different memory and compu-
tation capacity. Adapting the underlying architecture, such
as convolutional neural network with network volatility for
a different application, (e.g., natural language processing),
would be another future direction. Moreover, we can consider
an edge-based hybrid parallelism that combines both data
and model parallelism that can relieve some possible privacy
issues such as packet sniffing towards more distributed edge
learning.
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