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ABSTRACT In situations where surveillance or communication infrastructure has collapsed, it is important
to keep monitoring affected areas. We leverage unmanned aerial vehicles (UAVs) to collect and provide
up-to-date on-site information to a data consumer in an efficient way, for later complete yet agile analysis.
We propose a distributed dynamic data collection scheme for persistent surveillance and reconnaissance,
using a swarm of connected UAVs with two phases of operation: 1) network formation; and 2) UAV traversal
of a region of interest. The main task of a UAV is to continuously collect data within its sensing range,
while the UAV swarm travels along the calculated paths. When UAVs are newly connected to form a
swarm, or disconnected from an already-formed swarm, a formation phase begins. In the formation phase,
UAVs become a single group and produce a compact, dynamically alternating formation called DiagonalX
to cover broad areas, including boundary parts, in a fair and effective manner. During the traversal phase,
each UAV swarm finds a simple yet efficient navigation path based on data freshness to cover sub-areas
and continuously obtain up-to-date information evenly throughout the whole region of interest. Simulation
experiments confirm that both formation and traversal procedures perform essential tasks in a distributed
manner, while maintaining better data freshness than other counterpart algorithms, with a freshness factor
of up to 5.77, and reasonable overheads. An additional feature, a dynamically aperiodic formation change,
achieves a more stable performance.

INDEX TERMS Persistent surveillance, reconnaissance, connected UAVs, mobile sensor networks, swarm
exploration.

I. INTRODUCTION
Even in severe situations, where surveillance or communi-
cation infrastructure is useless or no longer available, it is
important to make contingency plans for keeping on-site
information up-to-date. Particularly in cluttered areas or bat-
tlegrounds, the acquisition of reliable surveillance and mon-
itoring at all times is critical. This kind of mission tends
to require simultaneous event monitoring across a region
of interest (RoI). Obtaining on-site information using cam-
eras or sensors evenly over an area with a lack of surveillance
and communication infrastructure is challenging.

The associate editor coordinating the review of this manuscript and

approving it for publication was Yuyu Yin .

The use of wireless sensor networks [1] has been
proposed to solve the problem of ad-hoc sensing and
surveillance, by using the sensors to construct low-power,
multi-hop networks. Efficient sensor deployment should pro-
vide adequate sensing coverage and network connectiv-
ity [2], [3]. However, sensor deployment for target detection
inevitably incurs deployment costs associated with utilizing
movement-assisted agents [4]. Also, static localized deploy-
ment suffers from static and irregular collection of local
information only in the vicinity of the constrained area in
which the sensors are deployed [5].

Since real-time data rapidly becomes worthless in sensor
networks, on-time data collection is crucial. Ensuring the
timeliness of the data collected is an important design factor.
A recent approach to this issue in stationary networks is the
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leveraging of mobile agents such as unmanned aerial vehicles
(UAVs) for target detection and sensing [6], [7].

Data collected by a single mobile agent remains isolated,
and disassociated from other areas in the environment. Proce-
dures for combining and maintaining all of the items of infor-
mation collected over an RoI by scattered agents not been
studied in detail. To address this problem, some researchers
have leveraged a swarm of multiple mobile agents for deploy-
ment, an approach which necessitates path planning [8]–[10].

When deployed, more stationary UAVs than dynamically
movingUAVs are required to cover a specific area. Therefore,
it is important to take a systematic traversal approach to using
a swarm of UAVs for consecutive data collection, while solv-
ing the problem of data consolidation and the synchronization
of disconnected UAVs.

In this work, we solve the problem of persistent surveil-
lance and reconnaissance, by constructing a connected swarm
of UAVs. We place a swarm of connected UAVs in a specific
formation and run a simple yet efficient traversal algorithm.
The formation is determined to be a relative disposition
within a group of UAVs which effectively and fairly covers
the RoI for continuous data collection. Our system enables a
connected UAV group to keep up-to-date on-site information
from local terrestrial areas, and maintain collected informa-
tion in a way which is efficient for later complete yet agile
access.

To define the essential design requirements to achieve
this goal, we first raise two key questions: 1) Is a mobile
swarm better for maintaining persistent data collection than
an individual UAV? and 2) If so, which formation is most
efficient for sensing coverage and network communication?

First, we propose a persistent data collection scheme using
multiple UAVs, which consists of two phases: UAV network
formation, and UAV traversal of an RoI. We derive a simple
yet efficient formation, DiagonalX, which forms alternately
diagonal shapes of UAVs, while keeping neighboring UAVs
connected. It enables effective navigation control as a group,
to cover unvisited or outdated areas, and facilitates data
sharing.

Second, we present a lightweight swarm traversal scheme
that identifies sub-areas in an RoI to visit in a persistent
manner. By considering both data freshness and trajec-
tory efficiency, a connected UAV group can keep up-to-
date information combined regularly and evenly throughout
the RoI.

The main contributions of this work can be summarized as
follows:

• Our approach offers a way for a group of UAVs to
construct spatio-temporal information chunks over an
RoI in a collaborative way, for a later extensive yet agile
surveillance updates over the area.

• To continuously and evenly maintain the timeliness of
locally collected data throughout the RoI, the task is
divided into two core sub-procedures: UAV swarm for-
mation, and UAV traversal.

• We propose an efficient UAV swarm formation shape
with a diagonal distribution, with periodic or aperiodic
alternate formation shifts to fairly cover the RoI, includ-
ing the boundary areas, and a traversal strategy which
takes into account data freshness.

II. RELATED WORK
The problem of persistent data collection using a swarm of
connected UAVs has two major aspects: 1) the way in which
a group of UAVs should behave in terms of connection and
traversal, and 2) how to ensure the data collected over the RoI
are up-to-date.

A. UAV SWARMS
The use of UAV swarms has drawn considerable attention
in the areas of surveillance, rescue, and data collection. Pre-
vious studies have used graphs consisting of a fixed num-
ber of locations which mobile agents have to visit, either
once [11]–[13], or in a periodic or persistent way [14],
[15]. Various forms of optimization problems with different
constraints to cover all locations via a shortest path have
been solved with variants of the Travelling Salesman Prob-
lem (TSP), Vehicle Routing Problem (VRP), or by integer
programming. However, many previous algorithms suffer
from excessive computational overheads.

More relevant to this work, [16] has used multiple UAVs
for infrastructure inspection, using a triangular formation for
the UAV swarm positioning. Those researchers exploited an
angle-coded particle swarm optimization approach to swarm
path planning. Some researchers have suggested a reconnais-
sancemethod inwhichmultiple UAVs follow optimized paths
identified using distributed particle swarm optimization [17].
Researchers have also studied the optimal deployment of a
UAV swarm in situations in which Internet of Things (IoT)
devices randomly change their active status.

Although these projects have proposed approaches to opti-
mal path planning for traveling, collision avoidance, and
energy efficiency, they do not explicitly consider the new-
ness or timeliness of the collected data.

B. UP-TO-DATE DATA COLLECTION
Since newness of data is critical to support real-time ser-
vices or surveillance, it has been investigated in various fields.
The problem in the fields of data analytics, knowledge dis-
covery, and control systems has been investigated under the
names of timeliness [18], [19] and the Age of Information
(AoI) [20]–[22]. These approaches have measured the new-
ness of data in terms of the elapsed time since an initial data
collection or an update on the data has occurred.

A concept known as the Age of Information has recently
been employed to represent the freshness of the data in
communication systems [20]–[22]. More closely related to
our work involving UAVs, some researchers have solved the
problem of collecting data from sensor nodes only once by
generating two different trajectories for a single UAV, based
on two different optimization metrics of the maximum AoI
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and the average AoI. However, this work is limited to one
mobile agent for data collection, and the feasibility of using
multiple UAVs has not been investigated in detail.

There has been little work addressing both path planning
for the connectedUAVs and the up-to-dateness of the data that
the UAV swarm has collected. Our work provides a specific
way to solve the challenging problem of persistent surveil-
lance and reconnaissance by multiple UAVs, by executing
robust swarm formation and traversal.

III. SYSTEM OVERVIEW
We address the problem of on-site data collection for surveil-
lance or sensing over a physical region of interest in a
continuous manner. We consider a scenario in which per-
sistent autonomous surveillance or on-site information over
a certain area is necessary, and existing surveillance and
communication infrastructure may be useless or no longer
available. One question that we raise is: can UAVs be utilized
for this mission, and if so, how they should perform over
time to collect on-site information and provide the most up-
to-date information to a surveillance officer or a military
sergeant?

We assume that UAVs can navigate over a virtual grid
topology by choosing either the north, east, south, or west
direction without any battery outage or obstacle collision
issues. The UAVs are equipped with a positioning system and
sensor devices such as cameras and motion or environmental
sensors with sufficient storage space that they can be aware
of their own position and collect on-site information over
cells within the sensing range at each grid point. UAVs can
communicate with each other using a wireless radio, such as
802.11 within the radio range. We assume that the communi-
cation radio range is larger than the sensing range. It is also
assumed that neither the number of UAVs nor the status of
other UAVs beyond their direct UAV-to-UAV communication
is known.

UAV navigation [23], [24], flight control model [25], data
routing [26], and communication issues [27], [28] for UAV
swarmmanagement are important in practice. However, these
issues comprise a separate problem, and are therefore not
explicitly considered in this article. Also, since our work
focuses on data collection, the fine control of UAV flight
movement has not been considered.

The goal of this article is to find a cost-effective traversal
and formation mechanism for UAVs, to maintain the most up-
to-date grid-based information over space and time. We aim
to collect the latest information over an RoI from a UAV or a
connected set of UAVs. Each UAV is allowed to navigate
over the area by itself or within a UAV group, by creating
a formation with UAVs encountered within the communica-
tion range, in a distributed manner. A UAV or UAV swarm
accumulates real-time information within the sensing range
over time, according to its traversal and formation scheme.
The data collected by a UAV or UAV swarm can be provided
as time-series data at each specific location over the RoI, in an
on-demand basis.

A. PROCEDURE
Our dynamic data collection scheme consists of two steps:
1) network formation and 2) traversal procedure by UAVs,
as depicted in Figure 1.

FIGURE 1. Overall procedure for persistent data collection by UAVs in two
phases: UAV network formation, and UAV traversal.

Each UAV starts navigating over a designated RoI by
finding a grid point to visit for retrieving the most useful up-
to-date information among the candidate points. Upon reach-
ing a specific grid point, the UAV updates the information
collected from that point in its local storage. To check for the
presence of other UAVs in its region, the UAV periodically
broadcasts a hello packet. If one or more UAVs are found,
each shares its own information collected from visited grid
points, and merges these data to its local storage. Then,
the UAVs create a specific formation, which can maximize
the total utility of up-to-date information for the grid points
covered by the group. The network formation procedure is
described in Section IV.

After this procedure, a UAV that has not yet encountered
other UAVs, or a group of UAVs after network formation,
continues to traverse grid points in such a way, as to provide
the maximum utility of up-to-date information. The UAV
traversal procedure is described in Section V.

The overall procedure is described in detail in Algorithm 1,
and the high-level workflow chart is presented in Figure 2.

IV. NETWORK FORMATION
In an infrastructure-free environment, where there are almost
no cameras, sensors, or communication networks, we can
utilize UAVs as information collectors on-the-go to gather
pieces of information from an RoI. To maintain the latest
information over a larger area, a swarm of connected UAVs
is needed.

UAVs connected and organized in a specific formation,
with the ability to communicate, can share of all the informa-
tion collected to date, and can be ready to send that informa-
tion to a data consumer whenever one is nearby. Depending
upon the UAV formation, even the same traversal pattern can
result in a different area sensed by a group of UAVs, and can
accordingly provide different information.
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Algorithm 1Overall Procedure for Data Collection by UAVs
1: Input: this: This UAV, t: Current time, uavGroup(this):

UAV groupwhich this UAV belongs to, formation refresh
period W , Grid topology of RoI
// I. Gather information from the currently coverable area

2: Initialize sensingDatat ;
3: for cell c ∈ coverableCellList(uavGroup(this)) do
4: Update sensingDatat (c);
5: end for

// II. Transition to formation upon an encounter with other
UAVs

6: if isTraversalPhase() == true then
7: Broadcast a packet to find nearby UAVs within com-

munication range;
8: if any UAVs with reply then
9: for UAV u who has replied do

10: uavGroup(this) = uavGroup(this) ∪
uavGroup(u);

11: sensingData(this) = sensingData(this) ∪
sensingData(u);

12: end for
13: Invoke formation() to make the DiagonalX forma-

tion;
14: else
15: Continue traversal();
16: end if
17: end if

// III. Alternate the DiagonalX formation for everyW
18: if t mod W == 0 then
19: Invoke formation() to change the formation;
20: end if

FIGURE 2. Workflow of the overall procedure in our proposed system.

A. MATHEMATICAL MOTIVATION
We present some underlying mathematical analysis on the
data utility gain produced by the specific movement of a

UAV swarm in each direction: upward, downward, left-
ward, or rightward. By investigating the typical formations
Circle, Straight, and Diagonal, we aim to derive a desir-
able formation structure that can outperform the baseline
formations.

We suppose that a swarm comprises K UAVs, where
K ≥ 2. The covered size and the radius of the sensing area of a
UAV are denoted as as and rs, respectively, where as = πrs2.
In this scenario, a UAV swarm is allowed to move 2rs at most
during a single time slot.

FIGURE 3. An example of a circle moving rightward. The blue colored
area represents the newly covered area, and the small circle show the
sensing area of a single UAV.

1) CIRCLE
The area which can be sensed by K UAVs can be approxi-
mated as a single large circle with a radius of rc, as illustrated
in Figure 3.

πr2c ≈ K · πr2s . (1)

The radius of the swarm group can be represented as follows:

rc ≈
√
K · rs (2)

In the Circle formation, the data gain for every direction is
taken to be equal. In Figure 3, the data gain based on the
Circle formation is marked with a blue area, as follows:

Gcircle = 2rs · 2rc = 4rs · rc ≈ 4
√
K · r2s (3)

Since the actual coverage of the Circle formation is less than
the ideal coverage, the data gain calculated in Equation 3
can be considered to be an upper bound of the actual Circle
formation coverage.

2) STRAIGHT
In the Straight formation, a UAV swarm can obtain data gain
equally for upward and downward, and also for rightward and
leftward. If the Straight formation is horizontally positioned,
the newly covered sensing area is denoted as follows:

Gstraight =

{
K · as = K · πr2s if upward or downward
as = πr2s otherwise

(4)

If the UAV swarm moves in a parallel direction relative
to the formation, the newly covered sensing area is obtained
only by a single UAV within the swarm.
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TABLE 1. Data gain over different formations for four directional
movements where the UAV swarm is horizontally aligned in the Straight
formation.

3) DIAGONAL
In the Diagonal formation, a swarm of UAVs form a down-
left-to-up-right or up-left-to-down-right position at an angle
of 45 degrees, with no overlap. The swarm can cover the new
sensing area with a data gain as follows:

Gdiagonal = K · as = K · πr2s (5)

According to Secs. IV-A1, IV-A2, and IV-A3, the data gain
of each formation can be summarized as in Table 1. The
data gain of the Diagonal is definitely larger than or equal
to Straight. Also, the data gain of Diagonal formation is
definitely larger than the gain of Circle under the following
condition:

K · πr2s > 4
√
K · r2s

≡
√
K ≥
√
2 >

4
π

(×
√
K · πr2s )

≡ K ≥ 2 (6)

As long as there are multiple UAVs to be used in a formation,
selecting the Diagonal formation offers a higher data utility
than the other formations. Thus, we choose the Diagonal
formation as the base formation for our scheme.

B. DiagonalX FORMATION
To produce an effective formation of UAVs, we identify three
requirements.We need a formationwith: 1)minimum sensing
range overlap among UAVs; 2) coupled interaction with its
group traversal phase; and 3) minimum travel distance and
time taken for the UAVs to relocate. To mitigate duplicate
coverage from the first two perspectives, the distance between
UAVs in the formation should be at least twice their sensing
range, while they should be diagonally positioned according
to their traversal direction, north, east, south, or west. The
effort required to relocate from the current formation to our
proposed formation should be minimized, to meet the last
requirement.

We propose a DiagonalX formation to satisfy the above
three requirements in an efficient manner. Our formation
procedure is first launched upon an encounter between at
least two UAVs within their communication range, or upon
disconnection among UAVs. All of the UAVs encountered
become part of the same group, and in case of separation
due to UAV malfunction or battery outage, the current UAV
swarm needs to be partitioned into separate UAV swarms.

First, the UAV located closest to the centroid of the group,
which is the center of mass, is selected as the master UAV.

Then, the master UAV finds a grid point closest to the center
location of the UAV swarm. The process of master UAV deci-
sion is conducted whenever there is any change in the UAV
group. Second, it selects a diagonal formation, either down-
right (Figure 4(a)) or up-right (Figure 4(b)), which can mini-
mize the required movement distance of all UAVs, including
itself. To quickly identify a one-to-one correspondence of
which UAV to move to which position in the formation,
we keep the same order in the x-coordinates of the current
UAV positions for the x-coordinates of their future grid point
locations in the selected formation. Third, the master UAV
calculates all of the relocation grid points for the other UAVs,
so that they can move to the calculated positions with the
minimum movement overhead, based on the centroid of the
above-obtained closest grid point. Lastly, after relaying the
calculated relocation information to all other UAVs, theUAVs
follow their own relocation procedures and complete the
initial formation.

FIGURE 4. Two versions of diagonal formation for data collection from
terrestrial local areas involving three UAVs with a sensing range
of 12 grids.

The overall formation procedure is described in
Algorithm 2.

If a group of UAVs keeps one diagonal formation, some
boundary grid points (illustrated in red color in Figure 4(a))
would have lower priority, and could remain uncovered dur-
ing traversal, even if there is sufficient time to cover the
whole RoI. This problem arises because the coverage of some
UAVs extends beyond the RoI. To overcome the inefficient
boundary issue, we switch from one diagonal formation to
the other, that is, from up-right diagonal to down-right diag-
onal, or vice versa, while rotating at an angle of 90 degrees
with every specified period of time, the reformation period,
denoted as W . Our DiagonalX formation can be applied to
an arbitrary shape of RoI due to its innate adaptive property.
TheDiagonalX formation has two variants: the originalDiag-
onalX formation makes a UAV swarm rotate in the clockwise
direction, while the Dynamic-with-Random formation allows
it to rotate randomly in either a clockwise or a counter-
clockwise direction.

If two different UAV groups that have already been formed
encounter each other, we choose one diagonal form from
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Algorithm 2 formation() by a Connected UAV Group
1: Input: this: This UAV, t: Current time, uavGroup(this):

UAV group which this UAV belongs to
2: Output: nextGridpointToVisit

// I. Select master UAV among group members
3: for all UAV u ∈ uavGroup(this)) do
4: calculate distance center;
5: set master UAV;
6: end for

// II. Find destination for new formation shape
7: if this == masterUAV then
8: Select next formation shape
9: Calculate relocation positions of each UAV in

uavGroup(this);
10: Pass the relocation position to each UAV in

uavGroup(this);
11: end if

// III. Move to relocation position
12: if currentPosition != relocationPosition(this) then
13: Randomly chose left x, y grid coordinate toward relo-

cationPosition(this);
14: Move selected grid coordinate;
15: end if

the larger UAV group, to minimize the relocation over-
head. If the group sizes are the same, we randomly choose
one form. If a UAV group whose formation is still in
progress encounters another UAV or UAV group, it ignores
the new encounter event and continues to finish its original
formation procedure. When UAVs that belong to a UAV
swarm become disconnected for any reason, including bat-
tery outage or UAV malfunction, the original UAV swarm is
divided into separate UAV swarms, while keeping the original
formation.

C. DYNAMIC DiagonalX FORMATION
We propose a dynamic version of DiagonalX, which adap-
tively changes the reformation period W to produce fair
coverage between boundary and non-boundary areas.

We first define the boundary areas denoted targetAreaA
and targetAreaB as illustrated with red colored cells in
Figure 5. The boundary areas are located at the vertices of
the RoI (for example, at the four corners in a squared RoI),
and are covered by the sensing range of a UAV. All of the
rest of the areas are defined as non-boundary areas, denoted
center, and belong to neither targetAreaA nor targetAreaB of
the RoI.

Depending on whether the DiagonalX formation is in the
down-left (Figure 5(a)) or down-right position (Figure 5(b)),
the target area varies. With the down-left position, targetArea
is divided into the south-west and north-east corners, denoted
as targetAreaA and targetAreaB, respectively.With the down-
right position, targetArea consists of the north-west and
south-east corners.

FIGURE 5. The targetArea for each diagonal formation using the
DiagonalX formation with three UAVs with a sensing range of 12 grid
squares.

1) DATA FRESHNESS
We introduce a data freshness measure, dataFreshness that
can be used as a metric of how up-to-date the data collected
from a certain cell are at a specific time. As the first data
freshness measure, we adopt the Age-of-Information with an
exponential decay penalty [29]. In our context, the age is
defined as the amount of time elapsed since the last data
update from a previously sensed cell. We accordingly denote
the data freshness for cell c at the current time t as follows:

dataFreshnesst (c) = αt−tlast (c) (7)

where the last updated time from cell c is denoted as tlast (c).
By applying an exponential penalty to the age, the data fresh-
ness metric decays toward 0 as the collected data becomes
staler over time.

As an example, in Figure 6 the dark gray-colored cells are
the already-sensed ones covered by a group of two UAVs,
where the centroid point of the UAV group is marked by a
red circle. The data freshness of these cells at this time is 1,
whereas that of unvisited cells is 0.

2) FORMATION CHANGE
It is usually harder to explore the boundary cells located at the
corners than those near the center using a swarm formation.
If the cells in both targetAreaA and targetAreaB areas have a
higher data freshness value than those in the center area on
average, we make a formation transition from down-left to
down-right, or vice versa.

Each UAV swarm decides to change one diagonal forma-
tion to the other if two conditions are satisfied:

dataFreshnesst (ctargetAreaA) > dataFreshnesst (ccenter ) (8)

dataFreshnesst (ctargetAreaB) > dataFreshnesst (ccenter ) (9)

where t is the current time, and ctargetAreaA, ctargetAreaB, and
ccenter are the cells in the targetAreaA, targetAreaB, and
center areas, respectively.

The direction of transitional rotation is randomly deter-
mined between clockwise and counter-clockwise. This fea-
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ture helps a UAV swarm to cover the given area in a relatively
fair fashion.

V. UAV TRAVERSAL
Regardless of the optimality of a specific formation, it is
still challenging to cover the whole RoI using only a limited
number of UAVs. To continuously maintain up-to-date infor-
mation throughout the area, a UAV or a UAV swarm needs to
embed its own efficient path planning algorithm. It should be
able to navigate evenly over grid points taking into account
the time of the last visit to them for data collection.

During the traversal phase, our UAV traversal algorithm
selects a grid point to visit for the next timeslot considering
two factors: 1) up-to-dateness of the data that have been
collected at visited points and 2) traveling distance from the
currently visiting point to a candidate point.

Our traversal scheme first calculates the data utility based
on how incoming new data collected by a UAV or a UAV
group improves the up-to-dateness of grid points. Then,
considering both the data utility and the traveling distance,
it selects a cost-effective grid point to visit for the next times-
lot in a greedy manner, using a point-mass mobility model.

A. CALCULATING DATA UTILITY
Based on the data freshness measure Equation 7 over all of
the cells in the RoI, we calculate an expected data utility
by sensing the cells within the sensing range if a UAV or a
UAV group visits a specific grid point. We expect to earn
more utility if a UAV or a UAV group determines a grid point
for which the cells within the sensing range have the lowest
data freshness. The data utility metric at the current time t is
calculated by accumulating the complement of data freshness
over relevant cells, 1− dataFreshnesst (c):

dataUtilityt (g) = 6c∈coverableCellList(g)

(1− dataFreshnesst (c)) (10)

As in Figure 6, a grid point candidate located at (5, 4) has
the dataUtilityt (g) value of 8× (1− 0) = 8. The data utility
for grid points outside the RoI covered by part of the UAVs
is assigned to 0.

B. SELECTING THE NEXT DESTINATION OF A CONNECTED
UAV GROUP
If we consider only the data utility measure to determine a
grid point with the largest value, irrespective of its location
from the grid point currently being visited, a UAV or a
connected UAV group may wander around the RoI for
greedily pursuing high profit without considering any loss
incurred during the procedure. To balance between profit
and loss when choosing a cost-effective next grid point to
visit, we introduce a penalty factor of distance, to reflect
relocation effort. Let us define priorityScoret (g) for a grid
point candidate g at the current time t as follows:

priorityScoret (g) = dataUtilityt (g)− β · D(gcur , g) (11)

FIGURE 6. An example of finding the next grid point for a group of two
UAVs to visit by calculating the priorityScore based on the dataFreshness
of each cell.

where β is a penalizing factor, and D(gcur , g) is the total
number of passing edges required to move from the currently
visiting grid point gcur to a grid candidate g, in the xy grid
coordinate.

The master UAV calculates the priorityScoret (g) of all
possible grid point candidates, and selects the grid point with
the largest value. If there are multiple candidates with the
same maximum score, it randomly selects one of them. Once
the next destination of the UAV group centroid is chosen,
the destination grid points of all UAVs belonging to swarm
are calculated. The connected UAV group leaves the current
location for the calculated destination. It continues to travel
along the shortest path by moving in a specific direction
(north, east, south, or west), while keeping its formation until
it arrives at the destination. The overall traversal procedure is
described in Algorithm 3.

VI. EVALUATION
We evaluate our persistent data collection scheme over an RoI
of 300× 300 m2 with a virtual grid topology of 75× 75 cells
of size 4 × 4 m2 in a simulation environment (Table 2). The
UAV flying speed is assumed to be 11 m/s (as per the Parrot
AR.Drone 2.0 specification), and an altitude of 4 m is used in
the simulation experiments. A timeslot (ts) is defined as the
time to fly from one grid point to another adjacent grid point.
A communication radio range of 30 m and a sensing range
of 10 m are used in the experiments.

The design parameters β, and W are set to 10−5, and
200 timeslots, respectively. The penalty base α ranges from
0 to 1, and is a fixed environmental factor determined by
the application type, where an α value closer to 1 indicates
that the data utility is less sensitive over time. If α is near
0, the data utility is more sensitively affected by time lapse,
and the selection of the next visiting point is more affected
by its physical distance, as well as the acquisition of timely
information.
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Algorithm 3 traversal() by a Connected UAV Group
1: Input: this: This UAV, t: Current time, uavGroup(this):

UAV group which this UAV belongs to
2: Output: nextGridpointToVisit

// I. Find a new destination only when there is no desig-
nated destination

3: if isEmpty(dest) == true then
4: Calculate dataFreshnesst , dataUtilityt , and

priorityScoret ;
5: if there are multiple grid points with the maximum

priorityScore then
6: Randomly select one grid point among them and

update dest;
7: else
8: dest = a grid point with the maximum

priorityScore;
9: end if

10: end if
// II. Find a next passing grid point toward the selected
destination

11: Calculate the number of edges in the xy grid coordinate
toward dest;

12: passingGridpoint = a passing grid point on the shortest
path toward dest;

13: if there are multiple passingGridpoint then
14: Randomly select one among them and update

passingGridpoint;
15: else
16: nextGridpointToVisit = passingGridpoint;
17: end if

TABLE 2. Simulation environment and parameters.

We evaluate dynamic data collection performance in terms
of the dataFreshness, network overhead, and fairness. We run
10 different simulations with randomly selected starting
points and quantify the performance by taking the average
value.

We validate our approach from the two perspectives of
network formation and traversal. To verify how good a spe-
cific formation is in terms of data freshness in each cell,
our proposed DiagonalX is compared against the formation
shapes Straight, Circle, andDiagonal. Straight is a formation
where UAVs in a group are aligned horizontally along the
X -axis. Circle is one of the most popular formation shapes,
considered to be an optimal compact packing algorithm [30].
Diagonal is a preliminary version of DiagonalX with the
fixed up-right diagonal shape without any alternating refor-
mation.

To examine the performance depending on the traversal
decision, we compared our traversal algorithm with a classic
TSP algorithm [31], which finds a sub-optimal path for a
single agent to cover the whole area while minimizing its
travel time. We let the TSP-based traversal run alone with-
out forming a group, called TSP w/o Group, and also ran
it combined with our DiagonalX formation, called TSP w/
DiagonalX.

We investigate how the data freshness measure improves
over time using eight UAVs in our DiagonalX (Figure 7).
We show the minimum, the average, and the maximum of
the dataFreshness measure among nine UAVs. As UAVs
encounter each other and start forming a group with the
DiagonalX formation, at 37, 41, 79, and 95 ts, the data
freshness score significantly improves. Once all of the UAVs
are united, at 108 ts, they maintain the same cell information
after forming a swarm, with the three minimum, average,
maximumvalues the same. Since ourDiagonalX alternates its
diagonal shape with every 200 ts, some oscillatory behavior
is observed, improving the data freshness by changing to
another diagonal shape to better cover the otherwise less-
prioritized areas. Eventually, at 1000 ts, the data freshness
reaches around 0.42, and the average elapsed time since the
last visit at each grid point is only 85.6 ts (0.42 ≈ α85.6).

FIGURE 7. Performance dynamics of the data freshness measure over
UAV travel time with eight UAVs using DiagonalX.

We visualize how recently a cell is visited and show
its cumulative distribution in Figure 8. In Figures 8(a) and
8(c), a normalized time elapsed at present, 1000 ts is lin-
early mapped to a 0-1 grey level scale with 0 as black and
1 as white, while unvisited cells are colored red. The Circle
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FIGURE 8. Visualization and cumulative distribution of 75 × 75 cells
based on the last visit time using the Circle and DiagonalX formations
with eight UAVs at 1000 ts. The darker grey color indicates more recently
visited cells, while the red colored cells show never-visited ones, and the
final sensing coverage of UAVs is shown with a blue circle.

formation results in 283 unvisited cells, 5.03 % of the total
75 × 75 cells, whereas the DiagonalX formation has only
13 unvisited cells, which is 0.23%.DiagonalX has larger dark
areas in broader regions than Circle. If the cells are sorted in
the order of time elapsed and accumulated, DiagonalX has
a significantly larger portion of cells with less time elapsed
compared to Circle. In DiagonalX, the average time elapsed
since the last visit time at a cell is 154 ts, which corresponds to
56 s. This observation indicates that an alternating diagonal
formation within a group enables the collection and main-
tenance of data that were collected only 56 seconds ago on
average from all of the cells.

We compare our algorithmwith seven different counterpart
algorithms in terms of data freshness and network overhead in
Figure 9.We quantify network overhead using two categories,
control and data. The control overhead includes all packet
transmissions for 1) sending a periodic hello packet to check
the presence of nearby UAVs, 2) notifying a formation posi-
tion, and 3) informing about the next cell to visit for traversal.
The data overhead quantifies all packet transmissions for data
exchange upon receiving a data query at 1000 ts except for
w/o Group, which should receive data as soon as the UAVs
are encountered, because they traverse individually without
forming a group.

As Figure 9(a) shows, DiagonalX achieves the highest
dataFreshness, outperforming all the other algorithms by a
factor of up to 5.77. This observation implies that forming
a group and making a specific formation shape is a key to

FIGURE 9. Network performance in terms of data freshness and network
overhead using eight UAVs at 1000 ts.

maintaining a collection of the most up-to-date local data.
The performance gap between the w/o Group and the TSP
w/o Group is due to the fact that the w/o Group, which is our
proposed traversal algorithm without forming a group, still
works well, since it prefers to visit some common cells more
often than the others and localizes its movement within the
area, making more frequent encounters possible.

As shown in Figure 9(b), DiagonalX attains a similar
network overhead as the other algorithms. Although Circle
achieves relatively low network overhead compared to Diag-
onalX, due to its innate compact formation toward a center
in terms of information exchange, it turns out not to be an
efficient formation in traversal for persistent data collection.
Also, the performance disparity between TSP w/ DiagonalX
and DiagonalX shows that a desirable traversal algorithm
focuses not only on travel efficiency, but also on information
up-to-dateness.

We examine the effectiveness of our algorithm using
another measure of the timeliness of information called
peak age of information (peak AoI) [22]. The peak AoI is
defined as the worst-case age of information at target cell i,
denoted as Api . When a UAV visits cell i, Ai is set to 1, and
the peak value occurs immediately before visiting the cell.

157914 VOLUME 8, 2020



J. Cho et al.: Towards Persistent Surveillance and Reconnaissance Using a Connected Swarm of Multiple UAVs

FIGURE 10. Relative peak age of information normalized by the
DiagonalX formation performance using eight UAVs at 1000ts.

FIGURE 11. Dynamic data freshness performance of DiagonalX with W
of 200ts, 400ts, Dynamic with a fixed direction, and
Dynamic-with-random with a random direction, with respect to UAV
travel time.

Wemeasure the relative peak age normalized with theDiago-
nalX performance after 1000ts, and take the average of 10 dif-
ferent cases. As shown in Figure 10, DiagonalX outperforms
the other formations: w/o Group, w/o Formation, Circle,
Straight, and Diagonal, by a factor of 2.86, 1.50, 2.05, 1.11,
and 1.44, respectively. The result shows that DiagonalX for-
mation along with the proposed traversal method is suitable
for both rapidly decaying data collection and age-sensitive
data collection scenarios.

Lastly, we investigate the effect of dynamic reformation
called Dynamic on top of DiagonalX. We show two types of
Dynamic: with a fixed, or with a random direction of rotation
for the reformation transition. As shown in Figure 11(a) and
Figure 11(b), Dynamic and Dynamic-with-random show rel-
atively more stable performance with less fluctuation, com-
pared to DiagonalX with a constant reformation periodW .

We examine the way in which the number of participating
UAVs affects the data freshness and fairness in Figure 12.
We vary the number of UAVs from 1 to 10, and measure
those metrics at 1000 ts. For the fairness metric, we use Jain’s
fairness index [32] ranging from 1/(# of cells) (worst case)
to 1 (best case) to calculate the latest visit time, normalized
by the end time at 1000 ts for all the cells. A larger fairness
index means a fairer number of visits to cells on average.

FIGURE 12. Data freshness and fairness performance with respect to the
number of UAVs.

Since the TSP-based approaches of TSP w/o Group and
TSP w/ DiagonalX show the poorest performance, we report
the results of all other algorithms except these two. As in
Figure 12(a), we validate that flying in a swarm is essential for
keeping data as up-to-date as possible. This is because thew/o
Group shows the worst marginal performance improvement,
even after engaging more UAV resources. Among the various
formations within a group, DiagonalX achieves the highest
data freshness, with a factor of 2.08 compared with Circle
(with a factor of 3.19 compared with w/o Group). In the case
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of sufficient UAV resource usage relative to the size of the
RoI (e.g., 10 UAVs), most of the formation-based approaches
show similar performance compared to DiagonalX, regard-
less of the formation shape. In Figure 12(b), both DiagonalX
and Straight show the highest fairness. This finding implies
that, considering both data freshness and fairness aspects,
DiagonalX formation keeps covering a given broad sensing
area with high fidelity and fairness, while incurring a reason-
able network overhead. A further improvement with adaptive
change in the reformation period via Dynamic-with-random
produces both data freshness and fairness that are evenly
higher than the other approaches across the number of UAVs.

We also investigate the effect of RoI size on dataFreshness,
using eight UAVs at 1000 ts for 10 different cases (Figure 13).
It is inevitable that dataFreshness declines as the RoI size
increases, because a given number of UAVs are not sufficient
to cover a larger area. However, we demonstrate that Diago-
nalX and Dynamic-with-random show stable up-to-date data
collection performance compared to the other approaches.

FIGURE 13. Data freshness performance with respect to the size of RoI
using eight UAVs.

VII. CONCLUSION
We have presented a lightweight yet effective data collection
approach using UAVs for persistent surveillance and recon-
naissance. We engage a connected swarm of multiple UAVs
with two phases – network formation and traversal – to keep
information up-to-date over time evenly throughout the RoI.

We have validated our original claims: 1) a swarm move-
ment with UAVs connected within a group was shown to be
better than an individual UAV for maintaining persistent data
collection over time; 2) a diagonal formation with alternating
reformation either periodically or adaptively, for even fairer
coverage across the areas, is a simple yet efficient swarm
structure, and is beneficial for navigation control and data
sharing.

For future work, we may extend our solution to the
persistent data collection problem in two dimensions to
three dimensions, in an RoI consisting of cluttered build-
ings or obstacles with different heights. A computationally
feasible path planning algorithm over a more complex search

space would have to be derived under practical constraints by
taking into account the control, navigation, and communica-
tion dynamics for more resilient UAV swarm management.
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