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ABSTRACT In disaster scenarios where communication networks have broken down, it is important to
ensure a reliable data delivery from an emergency operations center to the local target nodes within its
effective time limit. We propose a hybrid data delivery mechanism that exploits the load-carry-and-delivery
by UAVs with a mixture of localized ad-hoc routing over partially connected terrestrial networks. We aim to
achieve reliable on-time data delivery to the target nodes, while preserving the low routing cost. Our proposed
routing methodology consists of three steps: 1) localized network construction, 2) network probing by UAVs,
and 3) localized ad-hoc routing based on a dynamic depth routing tree depending on the data urgency. Here,
we present an innovative cost-effective local data sharing structure called localized minimal routing tree that
balances with the direct data delivery by UAVs. After the initial network setup and probing procedure, each
UAV makes a series of near-optimal decisions of which grid points to visit considering its localized network
topology and data urgency. Our time-dependent routingmechanism dynamically decides data recipient nodes
to serve more urgent data delivery with a higher priority at a time. The simulation experiments validated
our combined path planning and routing approach, achieving 71% higher reliability than the best possible
performance by using only the network nodes and consuming 20% lower energy than theUAV-only approach,
while maintaining high reliability. Thus, our work makes a strong case for systematically combining the two
approaches.

INDEX TERMS Time-dependent routing, delay constraints, load-carry-and-delivery, vehicular ad-hoc
networks, unmanned aerial vehicles, ad-hoc data delivery.

I. INTRODUCTION
Emergency preparedness against the event of natural or
man-made disasters has increasingly become one of the vital
prerequisites for protecting civilian lives and urban facil-
ities. Under these disaster situations, the telecommunica-
tions infrastructure is likely to have broken down because
of the physical destruction of the network devices or net-
work congestion [1]. The dynamically changing status or
disaster response information tends to be both time-wise and
location-wise sensitive. For example, the information for a
highly damaged area needs to be delivered within a relatively
tight deadline.With only the partially or completely collapsed
network infrastructure, the distribution of critical information
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to users is a considerably challenging task with severely
degraded node reachability.

To tackle this challenge, unmanned aerial vehicles (UAVs)
can be leveraged as extraordinary information messengers,
delivering data from an emergency operations center to the
affected areas or users in isolated ad-hoc networks. In catas-
trophic disaster situations, where the timely data delivery
should be reliable and stable, UAVs can contribute to relaying
packets while constructing a flying ad-hoc network them-
selves [2], [3]. Moreover, UAVs can assist the existing ground
networks as a substitute network on top of sparsely connected
networks [4], [5]. Depending on the urgency degree and the
location of the data to be delivered by a UAV, it can change
its own navigation priority to maximize the percentage of
successful data delivery given each distinct time constraint,
across a certain region of interest (RoI).
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Regarding the utilization of UAVs as an additional network
tier, several interesting works [6]–[8] have been proposed.
The prior works consider UAVs as data ferries in a load-
carry-and-delivery manner [9], [10]. By controlling their
mobility to determine an efficient navigation path, they aim to
deliver data to the corresponding targets at a reduced routing
cost and with increased throughput. Although the load-carry-
and-delivery paradigm frames the problem of data routing as
path planning, it relies heavily on the direct data delivery
from the UAVs to the local nodes, not fully utilizing the
partially connected networks.

In this paper, we present a hybrid data delivery approach
that not only considers the direct UAV data delivery but also
takes advantage of the ad-hoc routing strategy in the locally
connected networks. In a situation wherein various data need
to be delivered from an emergency operations center to the
designated target nodes within each distinct deadline, we aim
to maximize the successful on-time data delivery rate to the
local nodes, while preserving the low routing cost.

Without using any prior knowledge of the network topol-
ogy over RoI, the proposed approach consists of two phases:
1) initial network probing and local routing tree construc-
tion, and 2) time-dependent routing execution. We let both
the UAVs and the ad-hoc nodes perform the punctual data
delivery task in a collaborative fashion. Thus, the UAVs can
sparsely navigate the RoI area to drop off the data packets
only to certain selected delegate nodes, which will be in
charge of the local ad-hoc data delivery by using partially
connected static networks.

The advantages of the proposed approach are two-fold:
First, by decreasing the number of visiting places, the UAVs
can reduce the data carrying (traveling) time, eventually earn-
ing more time to perform more urgent data delivery to other
terrestrial nodes in need. Second, by using a time-dependent
and cost-effective local data sharing structure called localized
minimal routing tree, the chances of on-time data delivery to
a designated target node would increase because of benefiting
from the low network latency as compared to that in the case
of direct node-to-node delivery.
During the initial setup phase, the terrestrial nodes con-

struct their own neighbor node list by sending periodic or ape-
riodic broadcast packets. We extract the strongly connected
nodes and group them as a virtual node called a minimal
graph by using a graph coarsening procedure. After sharing
each minimal graph with the neighboring minimal graphs
up to M hops, we ensure that each node obtains an M -hop
local network and finally builds anM -depth shortest-path tree
having a minimal graph of the node as a root.

The UAVs initiate network probing to acquire all the possi-
ble localizedM -depth trees from the terrestrial nodes via cer-
tain grid points by navigating over the grid-based RoI, instead
of visiting each individual node. A UAV records the commu-
nicable nodes within its radio range at each visited grid point
along with its own localized M -depth tree. To quickly com-
plete the network probingwithmultiple UAVs, we perform an
almost equal distribution of the grid points to visit according

to the number of UAVs. We apply the m-TSP genetic algo-
rithm (mTSP-GA) [11] with some improvements to find each
optimal fair path among multiple agents by iteratively trying
out various path evolutions.

After the initial network probing, the proposed approach
begins the routing execution where the UAVs deliver data
with time constraints from an emergency operations center.
Each UAVmakes intelligent decisions ofwhich grid points to
visit considering the data urgency and the localized network
topology to maximize the on-time data delivery in a fully
distributed manner. When the UAV decides to visit a certain
grid point, it composes the data that can be delivered via
the communicable delegate nodes by using their localized
tree. A delegate node constructs the localized routing tree by
dynamically cutting some leaf or branch minimal graphs with
a relatively large packet deadline to reduce the unnecessary
data delivery with less urgency. The delegate node sends the
node list on the finalized routing tree that will be served at this
time back to the UAV so that it can reschedule the postponed
data delivery for the nodes cut from the originalM -depth tree,
later through another delegate node at a future grid point visit.

Although UAV-based data delivery and ad-hoc routing
were previously explored separately to improve data delivery
in disrupted networks, the extent to which their simultaneous
use improves the networking performance is unknown; how-
ever, the design of algorithms to systematically combine these
two approaches is now feasible. To the best of our knowledge,
this study is the first to exploit both the mobility of UAVs and
the localized routing structure under time constraints for the
problem of data delivery from UAVs. The proposed approach
achieved 71% higher reliability than the best possible perfor-
mance by using only the network nodes and consumed 20%
lower energy than the UAV-only approach, while maintaining
high reliability. Naive ways of combining the two approaches
would result in a far lower gain as shown by our work. Thus,
our work makes a strong case for systematically combining
the two approaches.

Our main contributions can be summarized as follows:
• We introduce network graph coarsening to effectively
extract the underlying routing skeletons from localized
ad-hoc networks and generate a localized tree structure
network for routing efficiency.

• We propose a novel routing framework such that UAVs
only need to deliver data to a root node of the localized
tree structure network, and then, the data can be effec-
tively spread from the root node to its leaf nodes, instead
of direct delivery to each node.

• We present a time-dependent ad-hoc routing structure
that dynamically decides whom to be transferred and
whom to be cut from a localized routing tree, depending
on the data urgency for punctual data delivery over the
network.

• Both UAV operations and communication require
energy. We evaluated the tradeoffs between these two
sources of energy expenditure to achieve a reliable deliv-
ery of data in disrupted networks.
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TABLE 1. A comparison of data delivery mechanisms.

II. RELATED WORK
The delay-sensitive data delivery problem in ad-hoc networks
consisting of both static and mobile nodes has been studied
mostly in two categories: by controlling themovement path of
the mobile nodes for data delivery in the wireless networking
community, or by finding efficient navigation paths of mobile
agents in the robotics community.

Prior works on mobility control for data delivery use the
message ferry paradigm [19], [20] that carries and directly
delivers data to the designated target nodes or collects data
from the local source nodes by finding optimal movement
paths in terms of the coverage efficiency. In particular,
UAVs have been used as flying message ferries based on
load-carry-and-delivery (LCAD) [8], [9]. LCAD aims to
maximize the throughput between two ground nodes by
engaging UAVs to relay messages [9]. Inspired by the LCAD
paradigm, a delay-sensitive data delivery to multiple targets
using UAVs is proposed [8]. However, these works rely
only on the direct door-to-door information delivery, lack-
ing the possibility of utilizing partially connected ad-hoc
networks.

Recently, there have been some studies on UAV-assisted
routing [7], [10]. These works aim to solve the reliable data
delivery problem in the UAV-assisted ground networks. Fur-
ther, with an increasing interest in practical system issues,

recent works have considered restricted energy capacity of
UAVs [15], [16], [21].

The problem of finding the efficient navigation trajectories
of mobile agents has been investigated as path planning by
robotics and operation research communities [22]. Tradition-
ally, prior works have been studied under the context of the
traveling salesman problem (TSP) [23], [24] or the vehicle
routing problem (VRP) [25], [26]. More closely related to
our work requiring deadline constraints, deadline-TSP [27],
[28] and VRP with time windows [29], [30] have been pro-
posed by formulating the problem with time constraints into
an optimization problem. Furthermore, motivated by evolu-
tionary biology, some generic algorithm-based path planning
mechanisms have been proposed in the UAV context [31],
[32]. Although these works have provided strong theoretical
results on space exploration, they may not be directly appli-
cable to the ad-hoc routing problem with UAVs, missing the
significant packet routing part.

However, not much work has been done on exploiting both
UAV data ferries and static ad-hoc networks for achieving
both routing agility and efficiency in the data delivery with
time constraints. Our work provides a novel hybrid path
planning and routing strategy balancing between the load-
carry-and-delivery by UAVs and the ad-hoc delivery by static
nodes.
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We summarize the problem and the methodology of previ-
ous approaches from the perspective of how much the UAV
delivery agent is engaged, as in Table 1. We divide the data
delivery schemes into three cases: 1) ad-hoc routing without
using any UAV delivery agent; 2) UAVmessage ferrying; and
3) collaborative ad-hoc routing with UAVs.

III. SYSTEM OVERVIEW
We design a routing framework such that UAVs and local
ad-hoc nodes collaborate with each other for ensuring
on-time data delivery from one source location (e.g., an emer-
gency operations center) to multiple nodes in the network.
We consider a scenario in which the network in the RoI is par-
tially connected, including numerous isolated sub-networks.
We assume that there are a significant number of broken
routing paths from one node to another in the terrestrial
ad-hoc networks unless additional network devices such as
UAVs are deployed. Under the severely disrupted networks,
there is a limit to data delivery only with node-to-node rout-
ing strategies. The objective of utilizing UAVs under the
disrupted network environment is to deliver timely data to
target user without interruption. UAVs can be a way to deliver
any kind of time-sensitive service information (e.g., urgent
announcement with time expiry or evacuation plan in disaster
scenarios).

We do not assume any prior knowledge of the network over
the RoI, such as the node locations and the connection status
with the neighbor nodes. We assume that the customized data
for each node with its specific delivery deadline is ready
to be picked up by the UAVs from a source node in one
delivery round and that the packet deadline can range from
tens of seconds to several minutes.

Both UAVs and target nodes are assumed to be equipped
with the same wireless radio interface as the terrestrial ad-hoc
nodes (e.g., 802.11 or 802.15.4) and the same wireless band
or channel; therefore, a UAV can communicate with another
UAVor the terrestrial ad-hoc nodeswithin its radio range. The
UAVs can fly over a virtual grid topology on the RoI with-
out experiencing any physical interference with the environ-
ments or other objects including other UAVs. Furthermore,
we assume that a UAV is installed with a storage device
sufficiently large to load the data for the terrestrial nodes
in the RoI from the emergency operations center. Although
UAV control-related issues such as obstacle, collision avoid-
ance, or skewed movement are important factors and investi-
gated [33]–[35], they are not mainly focused on, and out of
scope in this paper.

Our goal is to find the optimal navigation trajectory of each
UAV that maximizes the number of nodes with successful
on-time data reception by reducing the duplicate coverage
among the UAVs. From the network perspective, we aim to
design a simple localized yet efficient routing structure that
can reduce the overall delivery cost. The problem of data
delivery that we aim to solve is to find which grid points to
visit and then drop off a set of data that are supposed to be
delivered to the selected target nodes within the local routing

FIGURE 1. Overview of our time-dependent ad-hoc routing using UAVs.

range, maximizing the punctual delivery rate. To this end,
we seek a balanced routing decision between the direct UAV
delivery and the network delivery with an optimized mixture
under time constraints.

A. PROCEDURE
The proposed data delivery scheme using UAVs consists of
three phases: local network setup, network probing, and UAV
routing execution. A high-level illustration is provided in
Figure 1.

1) LOCAL NETWORK SETUP
During this setup process, each ad-hoc node constructs a
brief neighborhood network by extracting groups of strongly
connected nodes. First, on the basis of regular beaconing,
each ad-hoc node maintains a neighbor node list where the
node beyond a certain link quality threshold is considered
a neighbor node. Second, a set of nodes with strong link
quality is considered a single virtual node called the mini-
mal graph, which is a fundamental routing skeleton. Third,
each ad-hoc node shares its belonging minimal graph with
its neighbors up to M hops and receives the neighboring
nodes’ minimal graphs from them. It finally forms its local-
ized M -depth graph and tree structure as the root itself.
In this procedure, each ad-hoc nodemaintains a simplified yet
communication-wise and computation-wise efficient graph
for effective data distribution toward its leaf nodes upon
receiving the data from a UAV. More details can be found
in Section IV-A.

2) NETWORK PROBING
In order for UAVs to collect the child node list at each local
ad-hoc node and exploit it for effective path planning and
the resulting data delivery, UAVs probe a given network
by navigating a virtual grid topology. Upon visiting a spe-
cific grid point, a UAV records the connectable nodes and
their own localized network information. All of the possible
UAVs start their own probing procedure from a center after
being assigned the grid points to visit. To equally distribute
the exploration area, a partitioning algorithm is executed to
make all of the UAVs complete the data delivery mission as
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soon as possible. Refer to the detailed probing procedure in
Section IV-B.

3) UAV ROUTING EXECUTION
After the initial setup by the UAVs and the terrestrial ad-hoc
nodes, the entire network can gain the benefit of the data
delivery punctuality and efficiency from the collected local
network information. All of the UAVs share the collected
information about the communicable nodes at a grid point
and their localized routing tree before starting the routing
execution phase. Given this information, a UAV performs its
own distributed navigation decision of which grid point to
visit at a time for maximizing the on-time delivery service
rate for all the target nodes. As a UAV cannot be aware of the
progress status of the other UAVs unless they are encountered
within the radio range, it makes its best effort to reduce
duplicate coverage. Upon an encounter with another UAV,
it shares the visited grid point list and performs collaborative
task division for quick completion.

Once a UAV visits a specific grid point, it compiles all of
the data that can be delivered via the grid point by checking
the localized routing tree of the communicable (delegate)
nodes and broadcasts them with one packet. Then, the del-
egate nodes run their own localized M -depth routing tree
and dynamically trim certain nodes or branches over the
routing path depending on the remaining delivery time. For
example, if there exists a target node with a relatively large
remaining packet delivery time, the current delegate node cuts
the node from its routing tree at that time. There should be an
opportunity later through another delegate node when its data
delivery has become a little more urgent with lesser remaining
time. The detailed procedure is presented in Section V.

Note that once the initial setup phase of the local network
setup, network probing, and topology merging is executed,
it does not necessarily take place again nor always with UAV
routing, depending on the network dynamics.

IV. LOCALIZED ROUTING TREE WITH UAV PROBING
In an emergency situation where the communication network
has (partially) collapsed, it is important to ensure a reliable
communication channel from an emergency operations center
to the target nodes in the affected areas. The information
would likely be time-sensitive and location-sensitive: Each
target node would need to receive the location-dependent data
created at the center before the current information becomes
outdated.

Direct data delivery from the center to the target nodes (or
the nearby grid points) can reduce the energy consumption
at the terrestrial ad-hoc nodes, while incurring high packet
delivery time and possibly missing its deadline for the navi-
gation.

We attempt to leverage the partially connected local net-
works with the UAV delivery at a few selected grid points.
The use of local networks for data delivery may incur a
slightly higher routing cost but improve the on-time packet
delivery performance by reducing the number of visit points.

FIGURE 2. Network graph coarsening from an original graph to its
coarsened graph consisting of minimal graphs (where θLK = 0.5 and
θMG = 0.95).

We use this tradeoff relationship between the routing cost and
the routing reliability in the problem of UAV data delivery.

In this section, we present the initial setup procedures for
the local nodes and the UAVs. Each ad-hoc node builds a
lightweight yet efficient local routing tree as the root based on
its neighbor table sharing with its neighbors. UAVs perform
network probing to capture the local network topology infor-
mation of the connectable node list at each given grid point
and the local routing trees for the nodes as the root. To quickly
complete the probing with multiple UAVs, we want to almost
equally partition the probing area into multiple sub-areas so
that a UAV becomes in charge of an assigned sub-area.

A. LOCAL ROUTING TREE CONSTRUCTION
We construct a localized routing tree at each ad-hoc node that
captures the essential skeletons of the routing topology. Each
ad-hoc node monitors its vicinity by beaconing and discovers
its connectable neighbor nodes that satisfy the minimum link
quality threshold in terms of the packet reception ratio (PRR).
The high-level representation of neighborhood connectivity
can be illustrated as a graph as in Figure 2(a).

Data delivery based on the original connectivity graph
often includes very detailed information and incurs a high
computation and communication cost in the ad-hoc sensor
networks.

To address this scalability issue, we abstract the original
connectivity graph into a logically condensed graph called
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Algorithm 1 Local Routing Tree Construction (by Each
Node)
1: Input: Its own node n, θLK , θMG, M-depth
2: Output: Local routing tree (having node n itself as root)

// I. Make 1-hop Neighbor Node List
3: neighborNode(Nn) = ∅; // 1-hop neighbor node set of

node n
4: for node i that has ever sent ACK back do
5: if PRRNn→Ni ≥ θLK then
6: neighborNode(Nn) = {Ni} ∪ neighborNode(Nn);
7: end if
8: end for

// II. Coarsen network graph
9: ηMGNn = {Nn}; // Initialize a minimal graph including

itself
10: for node i ∈ neighborNode(Nn) do
11: if PRRNn→Ni ≥ θMG && PRRNi→Nn ≥ θMG then
12: ηMGNn = ηMGNi ∪ ηMGNn ;
13: end if
14: end for
15: neighborMG(MGNn ) = ∅; // 1-hop neighbor MG set of

MGNn
16: for node s ∈ ηMGNn do
17: for node t ∈ neighborNode(Ns) do
18: ifMGNs 6= MGNt then
19: neighborMG(MGNn )

= MGNt ∪ neighborMG(MGNn );
20: PRRMGNn→MGNt

= maxNi∈ηMGNn , Nj∈ηMGNt PRRNi→Nj ;
21: end if
22: WeightMGs→MGt = 1/PRRMGs→MGt ;
23: end for
24: end for

// III. Construct M -depth network and its shortest-path
tree

25: localNet(MGNn ) = neighborMG(MGNn );
26: for M -1 times do
27: Send localNet(MGNn ) to MGm ∈

neighborMG(MGNn );
28: Receive all localNet(MGm) from neighbor MGs and

merge them;
29: end for
30: Make its own shortest-path tree SPT (MGNn ) with MGNn

as root fromM -depth network;

the coarsened graph. During this coarsening procedure,
we apply a pioneering theoretical work of the multi-level
partitioning algorithm [36] with some modifications in the
edge cost calculation.

First, each node calculates the PRR of the communicable
nodes.We denote PRRNi→Nj as the PRR of the link from node
i to node j. The directional link with a PRR value larger than
or equal to the minimal threshold θLK is considered a valid
communication link.

Second, we perform a graph coarsening procedure. Among
the nodes, as shown in Figure 2(a), we partition a set of nodes
that have the PRRs of both bi-directional links larger than or
equal to θMG into one virtual node, called the minimal graph.
The nodes belonging to a minimal graph can be considered
as the strongly connected nodes. We denote MGNi as the
minimal graph to which node i belongs, and ηMGNi as a set of
nodes belonging to the minimal graph as node i. For example,
ηMGNn1

= {Nn1 ,Nn2 , . . . ,Nnl } means that nodes n1, n2, . . .,
and nl belong to the same minimal graph MGNn1 (or MGNn2 ,
etc.). If a node does not have any other strongly connected
nodes, its minimal graph only embeds itself.

To determine the link status between the minimal graphs,
we take the maximum PRR among the multiple directional
links toward one minimal graph. For example, an original
graph (Figure 2(a)) can be simplified as a coarsened graph
consisting of minimal graphs in Figure 2(b).

Once each ad-hoc node constructs its minimal graph with
the neighbor nodes, the minimal graph is propagated up to
M hops (on the virtual node basis). After the constructed
minimal graphs are shared among the other minimal graphs,
node i that belongs to its minimal graph MGNi maintains an
M -depth graph denoted asMDG(MGNi ), which is a localized
network of minimal graphs.

Finally, each ad-hoc node transforms its M -depth graph
into a shortest-path tree by having itself as the root.We use the
expected number of transmissions, i.e., 1/PRR as the weight
of the directional edge. We complete the ad-hoc network
setup by having M -depth local routing tree SPT (MGNi ) for
node i.

The detailed local routing tree construction algorithm is
described in Algorithm 1. The complexity of coarsening
a network graph is O(|neighborNode(Nn)|) to find 1-hop
strongly connected neighbors at node n, and O(|ηMGNn | ·
|neighborNode(Ns)|) to construct a 1-hop neighbor MG
set at each 1-hop strongly connected neighbor node Ns,
respectively.

B. NETWORK PROBING BY UAVs
Multiple UAVs collect the local connectivity information
over terrestrial ad-hoc networks through network probing
over the RoI. This network probing requires three steps:
1) partitioning the probing area, 2) detecting the local net-
works, and 3) merging the localized topology from all the
UAVs into a complete network topology.

To quickly explore the terrestrial ad-hoc networks by using
multiple UAVs, we partition all the grid points by the num-
ber of UAVs and assign each partitioned grid point list to
a UAV. We apply mTSP-GA [11] to find the near-optimal
shortest path for each UAV. The mTSP-GA tries out various
path transitions such as flip, swap, or slide to find the most
efficient path. We improve the original algorithm by replac-
ing its randomly selected initial path with a zigzag path via
K -means [37] and balanced K -means clustering [38]. For
example, the network probing paths for five UAVs are ini-
tiated with K -means, as shown in Figure 4(b).
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Algorithm 2 Network Probing
1: Input: grid topology, # of UAVs: N , θLK
2: Output: grid point-to-neighbor node list, localized rout-
ing tree
// I. Find the grid point visiting path with mTSP-GA

3: [probing path for each UAV] = mTSP-GA(grid topology,
N )
// II. Network Detection

4: for UAV u = 1 to N do
5: networkInfo(u) = ∅;
6: for each grid point Gi in a given probing path do
7: UAV u sends hello packets;
8: for node j that has ever sent ACK back do
9: if PRRGi→Nj ≥ θLK then
10: networkInfo(u)

= {(Gi,Nj, localNet(MGNj ))} ∪

networkInfo(u);
11: end if
12: end for
13: end for
14: end for
15: while any of UAV still probing do
16: Wait until all of UAVs finish and return back to the

center;
17: end while
18: Merge all the collected local network information into

networkInfo;

Once a UAV has its shortest grid point visit path after
partitioning the probing area, it continues to visit each grid
point from the path one by one. When the UAV visits a grid
point, it broadcasts its presence towards the communicable
nodes for detecting the local networks. A node that receives
the broadcast packet sends an ACK packet with its localized
M -depth routing tree back to the UAV. The UAV calculates
the PRR for the acknowledged nodes and records a set of
nodes ∀j with PRRGi→Nj greater than or equal to θLK into its
neighbor node list at grid point i denoted as Gi.
After all of the UAVs return to the starting point, which

is the original source center, they share all the grid point-to-
neighbor node lists and the collected localizedM -depth child
node list of each root node. Finally, all of the UAVs retain
complete network connectivity by merging the partial local
network topology.

The detailed network probing procedure by UAVs is
described in Algorithm 2. The computation complexity of
finding a grid point visiting path with mTSP-GA is O(L · S ·
N 2), where L is the number of iterations, S is the population
size at each generation, and N is the number of UAVs. This
network probing procedure can be performed in a periodic or
aperiodic manner to reflect the up-to-date network dynamics.

V. TIME-DEPENDENT AD-HOC ROUTING WITH UAVs
After the initial network setup and probing phase, UAVs
become aware of a complete network snapshot that has

been stitched with all the collected partial localized net-
work topologies from the perspective of some representative
ad-hoc nodes at certain grid points. This means that the
UAVs can recognize all the possible delivery path candidates
through a series of a certain grid point, its connectable dele-
gate node, and the node’s local routing tree that includes the
target node.

We consider a scenario in which the UAVs need to eventu-
ally deliver all the different data to the corresponding ad-hoc
nodes within the designated deadline. We assume that a
certain data item that is collected and created only for a
specific node has an effective time limit, e.g., some urgent
evacuation information on a certain node location for the next
10 min. In the situation of data delivery toward numerous
target nodes, the UAVs need to make intelligent path planning
decisions for achieving reliable on-time delivery to as many
destination nodes as possible.

As the data deadline range that we consider is not too
tight but is comparable to the UAV traveling time, e.g., from
tens of seconds to several minutes, the duplicate coverage
over the grid points by multiple UAVs harms the on-time
delivery performance for some parts of the target nodes and
possibly the entire network. Moreover, a very large number
of grid point visits by one UAV would lead to numerous out-
of-time delivery outcomes. Therefore, the three elements of
efficient path planning, fair (or collaborative) task division
among UAVs, and some wise usage of locally connected
networks along with the direct UAV delivery can contribute to
maximizing the on-time data delivery performance. If a suf-
ficient number of UAVs are used, we would rather rely more
on the direct UAV delivery to reduce the network overhead
for engaging local networks. If only some partial number of
UAVs are available to serve the punctual delivery service,
on the other hand, we want to push some responsibilities of
the direct UAV delivery to the local ad-hoc routing.

We present a distributed UAV path planning algorithm for
a UAV to determine the next grid point to visit on the basis of
the data urgency and the local routing information collected
at the grid points. With our path planning, the encountered
UAVs within the radio range perform collaborative task divi-
sion so that the remaining grid points to visit are distributed
to them, and accordingly, each UAV ends up with an almost
similar travel time. In our algorithm, a path planning and
routing decision is not determined all at once, and rather at
each time, a custodian UAV continues to make each moving
decision online dynamically over time. This can help UAVs
to compensate for some previous unexpected path visits (e.g.,
due to UAV control issues) in the middle of their mission.

Once a UAV visits a grid point to deliver data through its
connectable delegate nodes, it compiles all the relevant data
destined to all the target nodes deliverable via the delegate
nodes into a packet, and broadcasts it toward the delegate
nodes. To improve the broadcast packet delivery rate, our
protocol allows the transmission of up to TX times until
an acknowledgment is received. The minimal graph that a
delegate node belongs to builds a dynamic depth routing tree
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from its local shortest-path tree on the basis of the remaining
packet deadline for each target node. The root minimal graph
and a series of intermediate minimal graphs on the tree deter-
mine whether to keep transferring data to the child minimal
graphs or not, by checking the data urgency, data expiry, and
duplicated delivery.

A. UAV PATH PLANNING WITH COLLABORATIVE TASK
DIVISION
Our distributed path planning algorithm aims to minimize
the traversal time of UAVs for packet delivery by visiting
grid points and eventually maximize the on-time delivery
service rate. At the same time, we exploit some available
local terrestrial ad-hoc networks at an increased routing cost
to reduce the direct UAV data delivery time.

We consider three crucial parameters for designing an effi-
cient path planning algorithm: 1) the travel time to a possible
next grid point from the current one, 2) the number of target
nodes serviceable through the delegate nodes at a grid point,
and 3) the estimated data expiry status upon visiting a grid
point. We extend an existing path planning algorithm called
Myopic [8], [39] by harnessing our local network reachability
via a grid point.

We quantify the weighted sum measure considering the
three aforementioned factors as visit urgency with respect
to each future grid point to visit. In case a UAV visits grid
point i later, we preprocess its measure beforehand. We list
all the possible deliverable nodes set at grid point i on the
basis of its directly communicable delegate nodes, denoted as
ηGi = {Nn1 ,Nn2 , . . . ,Nnl }, where Nni is a node whose data
have not yet expired. Note that there exist certain nodes that
are reachable via multiple grid points.

The visit urgency for all the remaining grid points to visit
with respect to a grid point-to-node pair is calculated as
follows:

w(Gi,Nj) = α · TNj + (1− α) · d(Gcurrent ,Gi)/v̄uav (1)

where Gcurrent is the grid point where the UAV is currently
visiting, Gi is future grid point candidate i with Nj ∈ ηGi , α
is a tuning parameter depending on how much data urgency
is stressed out compared to the UAV travel time, TNj is the
estimated remaining data delivery time at the time of visiting
grid point i, d(Ga,Gb) is the physical distance between grid
points a and b, and v̄uav is the average UAV flying speed.
On the basis of the obtained visit urgency measure,

the UAV selects k grid points with the k lowest values as
the possible future grid points to visit. In case there are
some candidates with the minimum value, we select the grid
point closest to the current grid point. When these criteria
do not rule out the ambiguities, we check the number of all
the reachable nodes with a valid deadline at a grid point.
Lastly, we use random selection and obtain k future grid point
candidates.

To find the most efficient future trajectory from the set of k
selected grid points, we try out all the possible k! permutation
paths and find the best trajectory according to the number of

serviceable nodes normalized with the routing cost. This cri-
terion implies the cost-effective number of serviceable nodes
for the decision. If there still remain multiple candidates
even after this criterion, we perform the following priorities
of the estimated travel time over the trajectory, the closest
first visiting grid point from the current one, and the number
of serviceable nodes, which is defined above, of the first
visiting grid point. If these priorities can still not rule out the
ambiguities, we randomly select one out of the k trajectories.

Each UAV continues to determine the next grid point to
visit according to the above procedure until there exists no
remaining node to service. Upon encountering another UAV
on the fly within the radio range, the UAVs exchange their
already-visited grid point list and update their remaining grid
points to visit. To fairly distribute the grid points to visit
according to the geographical distribution of the remaining
grid points and quickly complete the entire data delivery
mission, we use the well-known existing clustering tech-
niques such as K -means clustering and balanced K -means
clustering.

B. TIME-DEPENDENT ROUTING IN LOCAL AD-HOC
NETWORKS
When a UAV visits a grid point, it informs the data dead-
line for the reachable target nodes of its connectable dele-
gate nodes. Using this information, each root minimal graph
to which a delegate node belongs builds a dynamic depth
tree from its shortest-path tree by cutting the leaf nodes or
branches with a relatively large remaining time or with data
that have already expired.

Eachminimal graphm calculates its representative remain-
ing delivery time TMGm by taking the minimum value among
all the remaining time values for its nodes. If the root minimal
graph receives data from the UAV, it checks whether the
remaining delivery time for any child minimal graphs is not
too high or larger than a certain threshold, which is TMGroot+δ
(where δ = |median ∀MGi∈localNet(MGroot )(TMGi−TMGroot )|, as
a minimal margin). For the child minimal graphs that have
lesser remaining delivery time than the threshold, the root
minimal graph distributes the data down to its child minimal
graphs.

Otherwise, the child minimal graphs that have a larger
deadline than the threshold are discarded from the routing
tree. The minimal graph cut from the routing tree still has a
chance to receive its data later through the UAV’s future grid
point visit and one of its delegate node as long as the cor-
responding codes are still in the UAV’s to-do-list. However,
in case a minimal graph needs to be cut on the basis of this
remaining time threshold, but its downward child minimal
graph has satisfied the threshold condition, we do not cut the
branch including the original minimal graph that violated the
condition from the routing tree for on-time delivery to the
child minimal graph in need.

For example, as illustrated in Figure 3(a), we obtain the
shortest-path tree from the M -depth coarsened graph. Then,
we extract the dynamic depth tree from the shortest-path tree
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FIGURE 3. Constructing a dynamic depth tree from the M-depth
coarsened graph marked with (MG ID, remaining deadline) for each MG
(where δ = 3).

by cutting the nodes (e.g., nodes 5 and 11), whose deadline
is greater than TMGroot + δ = 10 s + 3 s = 13 s, as shown
in Figure 3(b). Although node 7 also fails to meet the condi-
tion, like nodes 5 and 11, we let node 7 remain in the dynamic
depth tree because it includes one of its child minimal graphs,
node 12, whose deadline is within the threshold.

Once the root minimal graph finalizes its dynamic depth
tree by trimming the unnecessary minimal graphs and their
branches, it reports the valid target node list that is supposed
to be delivered in this round through the tree back to the UAV.
The UAV erases the target nodes from its remaining target
node list to deliver the data. On the basis of the remaining
target node list to deliver the data, the UAV runs its path
planning algorithm to determine which next grid point to
move to and moves to this point.

The detailed routing steps are described in Algorithm 3.
Regarding the computation complexity of the path planning,
it takes O(n · log(n)) to sort the n remaining target grid
points, and select the top k candidate grid points. To find
out the best trajectory based on the selected k candidate grid
points, it takes O(k! · k), where O(k!) is to find all possible
permutation order among the k candidates, and O(k) is to
traverse over the k grid points.

VI. EVALUATION
We validated the proposed scheme in a simulated network
of 300 randomly distributed nodes over the RoI of 300 m
× 300 m with a 16 × 16 virtual grid topology, as shown

Algorithm 3 Time-Dependent Ad-Hoc Routing With UAVs
1: while there exist new data at data center do
2: Retrieve target node and their deadline list {Ni,TNi};
3: 1 = 0; // Reset relative time clock
4: while there exist feasible nodes do
5: // I. Path planning of UAV
6: Select k candidate grid points according to criteria;
7: Find the best trajectory out of k! permutations of k

grid points;
8: Move to the next grid point of the trajectory;
9: // II. Time-dependent ad-hoc routing
10: for node i s.t. {Gcur ,Ni} ∈ networkInfo do
11: childNodeList

= time-dependent-routing(MGNi , TMGNi −1);
12: Delete all Ni ∈ childNodeList from target node

list;
13: end for
14: // III. Task division among multiple UAVs
15: if multiple UAVs encountered then
16: Exchange their own visited grid point list;
17: Perform task division for the remaining grid

points;
18: end if
19: end while
20: Go back to the data center;
21: end while
22: Function time-dependent-routing(MGroot , TMGroot )
23: Initialize dynamic depth tree DDT (MGroot ) =

SPT (MGroot );
24: for MGm ∈ localNet(MGroot ) do
25: Define TMGm = minNi∈ηMGmTNi as deadline of

MGm;
26: if TMGm > TMGroot + δ then
27: RemoveMGm from DDT (MGroot );
28: end if
29: if any descendant of MGm included in

DDT (MGroot ) then
30: Insert MGm and all upward parent MGs into

DDT (MGroot );
31: end if
32: end for
33: end Function

in Figure 4(a). This is the network size where a single UAV
takes 441 s for visiting all the grid points along one of the
most efficient paths based on mTSP-GA. We simulated a
damaged network where 83.4% of the src-to-dst pairs had
no valid routes. We implemented a packet-level simulator
in MATLAB for the algorithm-level validation. As a radio
propagation model, we used a combined path-loss shadow-
ing model with a path-loss exponent of 4, a reference loss
of 46.68 dB, and an additive white Gaussian noiseN (0, 52) in
decibels. In our experiments, we calculated the PRR by taking
the average rate over past 50 transmissions. We used the PRR
values of 0.5 and 0.95 for the valid link and minimal graph
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FIGURE 4. Simulated network topology with 83.4% of the
source-to-destination pairs having no valid route (a solid line denotes a
strongly connected link, and a dotted line represents a neighbor link) and
16× 16 grid points (with a gray ‘‘+’’ marker) and an example of the
network probing paths using balanced K -means clustering and the data
delivery paths with five UAVs over the network area.

TABLE 2. Simulation environment and parameters.

requirements. Next, we chose a suitable grid size smaller
than the communication range. The parameters used in the
simulation are listed in Table 2.

We randomly generated the uniformly distributed packet
delivery deadline for each distinct node with the interval of
[120 s, 180 s] for an urgent scenario. The flying speed v̄uav
of the UAVs was set to 12 m/s. The packet transmission time
was negligible as compared to the UAV traveling time. The
UAVs initiated and ended their network probing and data
delivery services at a data center, currently located at the
center of the RoI.

We evaluated our data delivery performance in terms of the
on-time serviced node percentage as the routing reliability,
transmission cost as the routing efficiency, and the travel time
of the UAVs as the path planning efficiency. We measured
the on-time serviced node percentage as the target node
percentage of the successfully received corresponding data
from the center node. We quantified the transmission cost
as the sum cost of the expected number of transmissions for
each link with PRR for all the broadcast and ACK packets.
Our time-dependent routing used up to five transmissions.
We showed the travel time of the UAVs by taking the average
values among all the used UAVs for a complete traversal
over the grid points. We run 10 different experiments with
randomly distributed time deadlines destined to all the nodes
and reported the average values with the standard deviation.
Initially, one UAV was used to purely validate the routing
performance, while avoiding the task division effect on the
path planning. The weight parameter α = 0.2 and the per-
mutation parameter k = 2 for the UAV path planning were
tuned during the experiments, as in [8]. The maximum depth
M = 3 for a dynamic depth tree and the deadline range of
[120 s, 180 s] for on-time delivery to the target nodes were
used, unless otherwise noted.

In our proposed system, during the network probing
phase, the probing paths for N UAVs are generated at the
source center, and each UAV travels along the assigned path
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FIGURE 5. Travel time of UAVs according to our network probing path
generation with respect to the number of UAVs.

independently, as shown in Figure 4(b) for an experiment
with five UAVs. We quantified the initial probing efficiency
in terms of the travel time of each UAV in Section VI-A. Once
the initial setup is completed, during the actual data routing
phase, all UAVs attempt to load data from the center and start
their data delivery tasks. Considering data urgency and travel
cost, each UAV consecutively runs its own path planning to
determine its next visiting grid point in a distributed online
manner, without any knowledge of other UAVs, as shown
in Figure 4(c) for an experiment with five UAVs. We investi-
gated the data delivery performance in Section VI-B.

A. INITIAL SETUP
During the initial setup, our scheme converted an original
network graph into its coarsened network graph (according
to Section IV-A). To check the coarsening outcome in this
simulation setup, we measured the number of vertices, edges,
and logical hops among all the connected vertex pairs for
each network graph. A vertex indicated an original node in
the original network graph, while indicating a minimal graph
in the coarsened one. The number of logical hops among
the nodes within the same minimal graph was counted as
0. After the coarsening procedure, the number of vertices
decreased from 300 to 140 with a 53.3% reduction, the num-
ber of edges decreased from 1,125 to 265 with a 76.4%
reduction, and the number of logical hops decreased from
141,684 to 86,466 with a 61.03% reduction. This implied
that the network coarsening helped to reduce the unnecessary
computation and communication overhead on both the UAV
and the node tiers.

We investigated the initial network probing efficiency in
terms of the travel time of the UAVs, as shown in Figure 5.
We compared three cases that we used as the initial values
for the iterations: 1) the original random values, 2) K -means
clustering, and 3) balanced K -means clustering. We mea-
sured the minimum, the average, and the maximum travel
time among the UAVs. As the number of UAVs increased,
the travel time for all the cases decreased as expected. The
usage of the initial values obtained after both K -means and

balanced K -means algorithms generated the most efficient
paths with up to 36% reduced travel time. Further, regarding
the time gap between the first completed UAV and the last
completed UAV, the original case had a time gap of up to 22 s,
whereas K -means and balanced K -means clustering resulted
in a time gap of at most 3 s and 4 s, respectively. This result
implied that the use of efficient initial paths on the basis of
the clustering techniques led to a relatively large number of
global optimal points for generating more equally distributed
paths of multiple UAVs in the initial network setup.

B. TIME-DEPENDENT ROUTING STRUCTURE
We examined our time-dependent routing performance in the
routing execution phase. To understand how the parameter
selection of the maximum depth M in our M -depth local
routing tree and the delay margin threshold δ for the dynamic
depth tree affected the routing efficiency as well as the routing
overhead, we varied M and the delay threshold, as shown
in Figure 6.

We first investigated how the maximum depth M
affected the performance by using a single UAV, as shown
in Figure 6(a). In a tight deadline case of [120 s, 180 s],
the on-time data delivery rate improved with an increase in
M , while increasing the network overhead as a tradeoff. This
implied that under very tight time constraints, the proposed
algorithm found a cost-effective way (e.g., using theM depth
of 3) for distributing time-sensitive data by utilizing some
parts of a local tree structure, thereby reducing the number
of grid points for a UAV to visit.

We validated our dynamic depth tree construction by vary-
ing our internal delay margin threshold, as shown in Fig-
ure 6(b). The use of a certain threshold margin δ upon the
formation of the final dynamic depth tree provided a great bal-
ance point that had a high on-time serviced node percentage
of up to 88.8% with a relatively medium network overhead.
Our time-dependent routing scheme dynamically changed a
routing tree in accordance with the urgency of packet delivery
with high adaptability toward dynamic networks.

As the proposed approach co-optimized both the UAV path
planning and the local network resources, we compared each
component with other counterpart algorithms. To evaluate our
routing-based path planning called RT-Path, we compared it
against a method proposed in a previous study [8], called
Myopic, where UAVs collaboratively traverse grid points and
perform direct data delivery just to a 1-hop neighbor node
from a visiting grid point without using any locally connected
network.

To validate our time-dependent routing structure called
TD Routing, we compared it with a simple flooding mech-
anism that broadcasts the information twice (resulting in a
steady-state delivery performance) with a duplicate check
until all of the connectable nodes are reached. We also com-
pared it with Multicast along the shortest paths to multiple
target nodes, allowing the transmission of only up to five
times until it received ACK (which was optimized to reach
the similar data delivery performance to that of flooding).
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FIGURE 6. On-time serviced node percentage and transmission cost with
respect to the maximum depth M and the deadline threshold of the
dynamic depth tree with the deadline of [120 s,180 s] using one UAV.

We explicitly quantified the number of grid points that
a UAV visited according to our RT-Path and Myopic. Our
algorithm visited 63.0 grid points on average, while Myopic
visited 84.1 grid points. This implied that our algorithm sig-
nificantly reduced the number of visits by 25.1%with an effi-
cient exploitation of the local networks, contributing to higher
on-time delivery performance. We also measured the travel
distance between two consecutive grid points. A UAV with
our algorithm flew further (35.46 m) than that with Myopic
(26.54 m), on average. This showed that our algorithm let the
nearby local network involved with routing, and made a UAV
move away to a distant territory.

We varied the service deadline from 30 s to 500 s
with the uniformly random range of ±30 s, as shown
in Figure 7. We combined our routing-dependent path plan-
ning algorithm RT-Path with our own routing protocol
TD-Routing and other counterpart routing algorithms ofMul-
ticast and Flooding, while also comparing it againstMyopic.
In the range of service deadlines from 30 s to 210 s, which
were relatively tight, our path planning algorithm with all
the routing algorithms started to achieve very high on-time
serviced node percentage as the service deadline was relaxed,
while outperforming Myopic and its one-hop routing algo-
rithm. From the perspective of the routing overhead, only the
TD-Routing algorithm among all the routing algorithms
with RT-Path maintained a very low transmission cost

FIGURE 7. On-time serviced node percentage and transmission cost with
respect to service deadline using one UAV with M = 3.

comparable to that of only the 1-hop data sharing with
Myopic. The proposed path planning and its coupled rout-
ing algorithm provided a very cost-effective performance,
whereasMyopic& 1-hop delivery scheme performed poorly,
particularly especially with some tight service deadline
ranges. Myopic often misses the service deadline for visiting
more grid points because of using only 1-hop transmission at
a grid point without using any local networks. Moreover, note
that although Multicast and Flooding exhibit high routing
performance, their transmission cost is significantly higher
than that of the proposed algorithmwith a factor ranging from
2.7 (forMulticast) to 15.7 (for Flooding). This implied that a
local routing strategy coupled with its direct load-and-carry
delivery strategy under time constraints should be based not
on a static routing structure but on a dynamic one considering
the up-to-date packet urgency.

We examined how the routing accuracy and overhead
performance were affected by the number of UAVs in a
tight deadline case of [60 s, 120 s], as shown in Figure 8.
Our path planning and routing algorithm, i.e., RT-Path
and TD-Routing, was compared against Myopic and 1-hop
routing [8] and mTSP-GA and Multicast. Our algorithm
achieved the highest on-time data delivery, while main-
taining a lower routing overhead than Multicast with
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FIGURE 8. On-time serviced node percentage and transmission cost with
respect to the number of UAVs with the deadline of [60 s,120 s] with
M = 3.

mTSP-GA. Even under scarce UAV resource with very few
UAVs, our RT-Path and TD-Routing kept relatively stable
timely delivery performance without much decline. It is due
to the fact that UAVs hover the RoI more extensively by
effectively arranging the given data delivery tasks to the
local network routing rather thanmissing the packet deadline.
Upon comparing our algorithm with the one without task
division, we found that collaborative task division among
UAVs is a necessary step to pre-plan their future visiting
paths that can arrange more urgent packet delivery with
a higher priority, achieving up to a 13% higher delivery
rate. As the use of more UAV resources means that each
UAV has a relatively large deadline through task division
and the on-time data delivery performance improves. Note
that the optimal number of UAVs should be selected con-
sidering both the network impairedness and the delivery
urgency.

We analyzed where the on-time data delivery failure came
from: 1) unvisited cell by UAV, 2) transmission failure, and
3) dynamic depth tree truncation. We counted the number
of failures belonging to each failure case. As more UAV
resources can be applied, the total number of delivery failures
significantly drops, as shown in Figure 9. It is interesting
to see that the dominant delivery failures come from UAV’s

FIGURE 9. Delivery failure performance according to UAV resource with
the deadline of [60 s,120 s] and M = 3.

FIGURE 10. On-time serviced node percentage w/ and w/o using UAVs
under severely disrupted networks with the deadline of [60 s,120s]
(3 UAVs and M = 3 used in our algorithm).

unvisit to cells. This makes sense with our original hypothesis
that the use of mobile agents for solving the problem of
on-time data delivery can secure valid routing paths even
under critically damaged network environments. This implies
that as more UAVs divide cells to visit in a collaborative
manner, they are capable of using the saved time for on-time
data delivery to nodes with a higher priority.

We investigated how our algorithm based on a balanced
mixture of direct UAV data delivery and static ad-hoc routing
advanced the pure static ad-hoc routing without any UAVs
in severely disconnected networks. As shown in Figure 10,
we compared against Flooding considered the upper bound
static node-based routing scheme in terms of data delivery
reliability. As the network becomes very severely damaged,
the on-time data delivery performance of our algorithm is
well-sustained, whereas the routing-only scheme degrades
severely to a delivery ratio of only 9.6%. This means that
in a severely disrupted network situation, the use of con-
trolled mobile agents can considerably recover the node
reachability.

We validated the resilience of our work under different
network environments with different network outage degrees,
as shown in Figure 11. For a different network environment,
we quantified the percentage of src-to-dst pairs with no valid
route. As shown in 11(a), our routing protocol provides very
stable routing reliability with at least 80.6% (even under the
worst network). One interesting observation is that as the
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FIGURE 11. On-time serviced node percentage, transmission cost, and
energy consumption in various networks with the deadline of
[60 s,120 s], M = 3, and 3 UAVs.

network gets more severely broken, the routing overhead is
rather significantly reduced. This is because the depth of the
localized network itself becomes lower because of the more
partitioned network status, and thus, the resulting transmis-
sion cost over the static network becomes lower.

Lastly, we examined how much energy was consumed
by the three different operations: 1) UAV flight movement,
2) UAV-to-node transmission, and 3) node-to-node transmis-
sion, as shown in 11(b).We applied a real-world drone energy
consumption unit, whichwas 178.4W as per theDJI Phantom
4 Pro V2.0 specification for UAV flight energy consump-
tion [40]. The energy consumption by wireless transmission
was calculated on the basis of the TelosB CC2420 specifi-
cation with a maximum of 100- ms transmission time per
packet [41]. As the network got more disconnected, UAVs
played a more dominant role in door-to-door data deliv-
ery and consumed more energy for UAV flights with three
orders of magnitude as compared to the transmission energy
consumption. With respect to the energy consumption by
wireless transmission, the energy consumption by the node-
to-node transmission decreased because of the lower uti-
lization of static nodes for routing, while the UAV-to-node
transmission consumed slightly more energy for more active
UAV utilization for routing. Thus, there was an interest-
ing tradeoff between energy consumption and on-time data
delivery performance.

VII. CONCLUSION
We have presented a time-dependent ad-hoc routing structure
for delivering delay-sensitive data using UAVs. The proposed
algorithm exploits an optimal mixture of direct UAV data
delivery to certain spots and a localized cost-effective data
sharing structure from there to the local nodes. Our work
uses a tradeoff relationship between routing reliability and
efficiency in the problem of data delivery using UAVs.

We have incorporated the minimal graph structure for
extracting the strongly connected nodes via a graph coarsen-
ing procedure. By preparing a localized cost-effective routing
structure at the terrestrial ad-hoc nodes, UAVs performed
their own distributed optimal path planning to determine the
grid points to visit on the basis of the data urgency and
the local network status. We have demonstrated that our
algorithm considerably improved the on-time data delivery
performance, while reducing the routing cost as compared to
some counterpart algorithms.

In the future, we may consider UAV data delivery sce-
narios from multiple data center locations to generalize path
planning and its dependent routing architecture. Moreover,
as the battery outage for traveling over a selected trajectory
may affect its original movement, it would be interesting
to optimize the UAV’s navigation path for visiting charging
stations. In case of having each different data value, its cor-
responding priority should also be considered to select next
visiting points in the path planning phase.
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